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FOREWORD 

NASA, in cooperation with the AIAA Computer Systems Technical Committee, 
sponsored this workshop on Tools for Embedded Computing Systems Software. The 
rapidly increasing capabilities and decreasing costs of digital computing sys- 
tems have meant orders of magnitude increases in the uses of these systems in 
aerospace systems, particularly onboard satellites and aircraft. Its labor 
intensive nature and crucial role in proper operation of the embedded computing 
system have made the development and testing of software an expensive and crit- 
ical function. To cut the cost of the development of the embedded system soft- 
ware while enhancing its reliability, a number of tools (i.e., computer programs) 
have been developed in the recent past. 

The objectives of this workshop were to assess the current state of these 
tools and determine directions for future tool development. The workshop was 
organized around four major areas: Tools and the Software Environment (devel- 
opment and testing); Tools and Language Processors; Tools and Software Require- 
ments, Design, and Specification; and Tools and Verification and Validation 
(analysis and testing). This document contains only a synopsis of the talk and 
the key figures of each formal workshop presentation together with summaries by 
each of the session chairmen. 

The synopses were submitted as camera-ready copy prior to the workshop. 
Only minor editorial changes have been made and a title page and abstract have 
been added. The assistance of the Scientific and Technical Information Programs 
Division of the NASA Langley Research Center in publishing this preprint is 
gratefully acknowledged. 

The workshop was structured to provide ample time for audience interaction 
in addition to the formal presentations. On the evening of November 7, a panel 
discussion on "Software Management, Methodology, and Tools" was held. The 
panelists were Victor Basili, University of Maryland; Jack Garman, Manager of 
Shuttle Avionics Software at NASA Johnson Space Flight Center; James Stringer, 
Computer Sciences Corporation; and Kenneth A. Hales, Boeing Aerospace Company. 

The Workshop Subcommittee were Terry A. Straeter, Chairman, NASA Langley 
Research Center; Phil S. Babel, Wright-Patterson Air Force Base; James W. Clark, 
United Technologies Research Center; George R. Fath, General Electric Company; 
Charles H. Fletcher, Stromberg Carlson Corporation; Sabina H. Saib, General 
Research Corporation; Robert 3. Schwartz, McDonnell Douglas Astronautics Company; 
and Lynn S. Wilson, Grumman Data Systems Corporation. 

Use of manufacturers or identification of commercial products in this 
report does not constitute an official endorsement of such manufacturers or 
products, either expressed or implied, by the National Aeronautics and Space 
Administration. 

Terry A. Straeter 
Program Chairman 
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1 
THE SOFTWARE ENVIRONMENT - NOW AND IN THE FUTURE 

Kenneth A. Hales 
Boeing Aerospace Company 

SUMMARY 

The present status of facilities and support tools used to develop and 
integrate software are characterized and described. An assessment of these 
present systems is made and a projection is offered which characterizes soft- 
ware development systems of the future. 

PRESENT SYSTEM CHARACTERISTICS 

Software Development Triangle 

The design and development of embedded software systems is performed on 
computers found in software development laboratories. The selection of the 
computers which contain the embedded software code is a function of the oper- 
ational requirements, as well as a function of the languages used to develop 
software, and the types of computers used to initially generate the software. 
Figure 1 describes the software development triangle. In the bottom left-hand 
corner of figure 1, the program generation center computers are identified. 
These computers are called "host computers." They provide a home for the 
support software used in conjunction with the application code to generate and 
test software which will ultimately run on the operational or "target" computers 
shown in the bottom right-hand corner of figure 1. To complete the triangle, 
higher-order languages are identified. 

The triangle is subjected to external influences. For example, the higher- 
order language of the system of software is influenced by the desire to have 
high programmer productivity and cost-effective software maintainability, and 
is a function of specified government regulations. The target computers are 
strongly influenced by operational requirements. The type of program generation 
center computers is influenced by the quantity of software that has to be 
generated. For example, if only a small amount of software has to be generated, 
it is possible that the target computers can be used to provide adequate host 
support. 

In selecting the host computers, target computers, and the higher-order 
language for the embedded system under consideration, availability of compilers, 
as well as a complement of extensive support software, must be considered in 
making the final decision. The ideal situation is to select target computers 
which are highly satisfactory in meeting operational requirements while also 
being compatible with program generation center computers which contain an 



extensive suite of support software. Ideally also, is the selection of a pro- 
gram generation center suite of computers which can be dedicated to the specific 
project or is available within the company's central computing facility run by 
a central/trained staff. The program generation center should also be compati- 
ble with the most effective means of generating software, which in some cases, 
requires the ability to code interactively in a higher-order language. 

To effectively integrate software elements into a working system, extensive 
amounts of simulations are performed. Figure 1 indicates that host simulations 
are used within the program generation center. Host software accepts functional 
simulations, or instruction level simulations, so that the developed software 
may be extensively integrated against models of the external environment while 
still operating on the host computers. Real time simulations are also used. 
These simulations require software, computers, and possibly hardware, and inter- 
face with the operational target computers. To properly generate a solution to 
the problem of the most effective software development system, the aspects of 
the software development triangle must be comprehensively evaluated. 

Software Development and Integration Facilities 

Figure 2 describes the ingredients of a successful environment. Figure 2(a) 
symbolizes a building or a facility which is designed for the programmer. 
Further material is available on the architectural design of a laboratory for 
program development (reference 1). Within a building, a facility will exist 
which will contain a host machine with extensive support software and appropri- 
ate peripherals (see figure 2(b)). This computer complex is used to develop the 
software. The software project may also contain a facility which has a target 
computer interfacing with a simulation computer and selected pieces of system 
hardware. The latter facility is used to integrate the software. Figure 2(c) 
symbolizes this target machine complex. The target computer runs the embedded 
application software. The simulation computer contains a model of the external 
environment. The hardware is representative of one or more pieces of hardware 
which the target computer must control. Initially, the target computer will 
work directly and solely with the simulation computer. As hardware becomes 
available during the development of the total project, pieces of mature hard- 
ware can be entered into the target machine complex and simulated elements 
contained within the simulation computer dropped out. This will allow the 
target computer software to be integrated as a system and checked out against 
the models of the external hardware and high confidence pieces of the actual 
computer hardware prior to releasing the target computer and software to the 
system-oriented software/hardware integration phases of a project. Figure 2(d) 
symbolizes the final aspects of the ingredients of a successful environment. 
Here tools, standards, training, etc., are shown which are project unique and 
company unique. These products have been built with the productive development 
and management of software in mind. 

The host machine complex and target machine complex are sometimes combined, 
or sometimes separate in a given application. Figure 3 shows the most common 
combinations of computer elements. Figure 3(a) shows a multipurpose host complex 
where the host computer is equivalent to the machine which will be delivered as 
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part of the embedded computing system. Here the host machine complex is used 
to develop the software, as well as integrate the software. The host machine 
will contain functional simulations, as well as real-time simulations so that 
software may be generated, checked out functionally,.and then operated in real 
time against a real-time simulation of the external environment contained within 
itself. In the case that the target computer is quite different from the host 
machine computer, a software development and integration complex is created 
(see figure 3(b)). The host machine complex is used to develop software and con- 
tains a real-time simulation which interfaces with the target computer. The 
target machine software is exercised against the real-time simulation in the 
host machine complex. The most extensive software development facility contains 
.a partitioned software development and integration complex (figure 3(c)). The 
host machine complex shown in the figure is the host for software development. 
The second portion of the facility is a software integration center consisting 
of the target computer, a simulation computer, and selected external hardware. 
The software integration center is used to exercise target machine software. 
Numerous examples of various applications'of the combinations shown in figure 3 
are found in the literature. 

ASSESSMENT OF PRESENT SYSTEMS 

The Computer Technology Forecast and Weapon Systems Impact Study was held 
at the U.S. Air Force Academy from August 14-25, 1978. The Technology Forecast 
and Impact Study made an assessment of the present state of the art in program- 
ming environment. The panel of experts related to software stated that exag- 
gerated claims have been and continue to be made for isolated tools and tech- 
niques. They pessimistically stated that most program development is done with 
severely inadequate tools. They also indicated that a compiler is frequently 
equated with a programming environment. In reality, a compiler constitutes only 
one small, albeit important, component of an automated environment for program- 
ming. They made the point that management awareness of the progress of soft- 
ware development is woefully inadequate. The study also confirmed that experi- 
mental use is being made of selective tool and technique concepts not yet 
widely available. In short, the study panel indicated that the trends are in 
the right direction, but significant progress has to be made before the numer- 
ous claims for techniques to enhance productivity will become a reality. 

DESCRIPTION OF FUTURE SYSTEMS 

Future host systems will consist of a generalized input/output port acces- 
sible to the user. This port will interface with remote, distributed systems of 
computers as shown in figure 4(a). The host system of software will exist on nu- 
merous computers. 
languages. 

The user will be able to program in his choice of higher order 
Extensive support software systems for numerous target machines, 

including microprocessors, will exist. 
development tools. 

The host system will include extensive 
Algorithm banks will exist on the host system with automated 
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language/machine dependent translation capabilities so that the algorithm banks 
are portable between applications. Evidence of trends toward the future host 
system is described in reference 2. In addition, the Technology Forecast and 
Impact Study describes the National Software Works (NSW). This concept is a 
joint Air Force/ARPA sponsored program to provide a configurable programming 
environment through the use of computer networking. It allows the software 
developer to use software tools on various computer systems. 

Future integration and maintenance systems will consist of a generalized 
host complex, as well as a generalized target/simulation computer complex. 
This concept is proposed in reference 3 and symbolized in figure 4(b). 

The Technology Forecast and Impact Study forecasts that future trends will 
see generalized programming environments being designed and selectively imple- 
mented. Hardware manufacturers will provide machine and language dependent 
environments as subelements of the generalized programming environment. 
Techniques will be developed to isolate language and operating system depend- 
encies as much as possible. They pointed out that the higher order language 
standardization within DOD will make it possible to achieve a rich program 
development environment accessible to a large number of people. The generalized 
programming environment will host more and more automation tools which will be 
provided to enhance the development, management and testing of future systems. 

Future directions are becoming more focused. Future systems are now able 
to be articulated and described. Now all that is needed is effort, time, and ' 
commitment. 

REFERENCES 

1. McCue, Gerald M.: IBM's Santa Teresa Laboratory - Architectural Design for 
Program Development. IBM Syst. J., vol. 17, no. 1, 1978, pp. 4-25. 

2. Sutton, W. Lin; and Santoni, Patricia: The System Design Laboratory (SDL). 
Tools for Embedded Computing Systems Software, NASA CP-2064, 1978. 
(Paper no. 2 of this compilation.) 

3. Kishi, F. H.; and Corder, D. R.: A Software Change Development Laboratory 
for Supporting an Aggregate of Embedded Computer Systems. Tools for 
Embedded Computing Systems Software, NASA CP-2064, 1978. (Paper no. 16 of 
this compilation.) 



The Software Development Triangle 
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Most Common Combinations of Computer Elements 
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Figure 3 
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2 
THE SYSTEM DESIGN LABORATORY (SDL) 

W. Lin Sutton and Patricia Santoni 
Naval Ocean Systems Center 

The System Design Laboratory (SDL) is a joint ARPA/Navy project which 
brings together in one widely accessible, cohesive environment the tools which 
are needed by the designers and developers of embedded computer systems. It 
is intended to support work in software, firmware, and hardware systems design 
and development. The goal of SDL is two-fold: (1) to make those tools that 
exist available to the designers of Navy Systems and (2) to promote the neces- 
sary research in areas where adequate tools do not exist. 

Eventually, SDL will include tools in the areas of requirements (e.g., 
Hierarchical Development Methodology hierarchy manager and Specification and 
Assertion Language (SPECIAL) analyzer), modelling (e.g., simulation languages), 
implementation (e.g., language processors, emulator/debuggers for target 
machines), and testing (e.g., the Automated Testing Analyzer for CMS-2M). In 
addition to these, there will be tools to support text composition, document 
generation according to MIL standards, project management, and the various re- 
formatting routines that may be necessary to prepare the output of one tool 
for input to another tool. 

Currently, SDL primarily offers an AN/UYK-20 and Intel 8080 software 
generation center. The outstanding feature in this environment is a micro- 
programmed emulation of eqch of these machines which provides a CPU and periph- 
erals with all of the options available on the real equipment, plus very 
sophisticated debugging capabilities. These tools reside on the ARPANET on 
two host machines, (a DEC PDP-10 and an IBM S/360-91) and a micro-programmable 
emulator, the MLP-900. All processing is done on the host machines to generate 
code for the target machines. The user primarily works from a terminal until 
all possible testing has been done via the SDL facility and it is time to 
generate a tape of his system to try on his actual hardware. 

Since the opening of the SDL/IOC, several projects from different Navy 
and industry activities have made use of its facilities. Among them have been 
projects from NESEC, NOSC, Litton, and SDC which primarily made use of the 
AN/UYK-20 software generation and debugging capabilities; projects from FCDSSA 
and NOSC which have made use of the PSL/PSA and URL/URA tools; and projects 
from NOSC which have experimented with the upcoming HDM tools, including the 
specification language SPECIAL. The usage to date has been primarily experi- 
mental and has served to shake out many of the SDL concepts and tools. Users 
have shown special enthusiasm for those tools which are not available else- 
where, including the PRIM emulation tools, the HDM tools, and the ATA. 

The SDL is an idea which is long overdue in the DOD. In the future it 
will continue to evolve and include more of the sort of tools indicated above 
and pursue more of the research needed to bring the cost of military embedded 
computer systems down to a more reasonable level. 
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3 

INSTRUMENTATION AND CONTROL OF A VIRTUAL MACHINE 

Majorie K. Kirchoff and S. Harris Dalrymple 
McDonnell Douglas Astronautics Company 

The use of microcoded emulations as a technique for the development and 
validation of real-time software has proven to be a very versatile and effec- 
tive tool. Since the virtual machine produced through emulation is a product 
of software, it is possible to imbed a wide range of debugging facilities not 
ordinarily available in its hardware counterpart. Extensive error checking may 
be performed, programming standards and application peculiar conditions moni- 
tored, and performance measurement statistics generated. Also, external inter- 
faces may be simulated to provide a dynamic execution environment as well as 
collect output such as a telemetry stream for postmortem analyses. 

To control this complex virtual machine, a unique dual emulation approach 
has been developed which capitalizes upon the availability of a wide spectrum 
of support software on the secondary machine. Hosting the emulation systems 
is a Nanodata QM-1, a machine specifically designed to support multiple emula- 
tions. It features a three-level memory system, each of which is writable: 
Main Store (core) for tar et machine code, 

9 
Control Store (LSI) for vertical 

microcode, and Nanostore LSI) for horizontal microcode. 

By combining a NOVA 1200 emulator with the real-time computer emulator, 
software development systems for three control processors have been developed: 
SCP-234, MAGIC 352, and LC-4516. While each of these emulators is quite unique, 
their control has been uniformly accomplished by means of programs, written 
primarily in FORTRAN, running on the emulated NOVA. The memory resources of 
the QM-1 are divided between the two emulators while the peripheral devices are 
assigned to the NOVA. 

Communicaion between the emulators is accomplished via a common buffer 
residing in control store. Special instructions have been added to the NOVA 
emulator to allow it to read/write into control store, to read/write into the 
target machine main store, and to "turn on" the real-time processor. In a 
similar manner, the real-time processor emulation when detecting an error or 
requiring I/O services can return to the NOVA leaving a flag in the comnunica- 
tions buffer to indicate the action required. 

Once a real-time program has been debugged, it is often necessary to make 
a large number of parametric runs to validate or verify the input parameters 
for various applications of the software. Increased speed may be obtained by 
deleting capabilities from the emulator and migrating functions from the con- 
trol program down to the microcoded emulator while at the same time requiring 
minimal modification to the supporting control program. 

11 
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PROGRAM CONTROL FACILITIES 
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. SNAP DUMPS 

l MEMORY AND REG I STER DUMPS 

l MEMORY AND REG I STER EXAM INAT I ON 

.MEMORY AND REGISTER MODIFICATION 

. MEMORY IF I LE COMPAR I SON 

.ERROR CONDITION DETECTION 

Figure 4 
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ERROR CONDITION DETECTION 

.MISSING CARDS IN DECK 

. ILLEGAL OPERATION 

. ILLEGAL INPUT/OUTPUT COMMAND 

l ILLEGAL EFFECTIVE ADDRESS 

. IMPROPER REGISTER USAGE 

. INFINITE LOOPS 

l INTERRUPT PROCESSING TOO LONG 

l FORCED BREAKPOINT 

. HALT INSTRUCTION 

Figure 5 

SAVINGS VIA EMULATION (DIGS-DELCO PROGRAMS) 

COST COMPONENT SIMULATION MDAC 9b- 
ALTERNATIVE EMULATION SAVINGS 

1. DEVELOPMENT TIME 
- TOOL --- 1.2 MAN-YR 
-COMPUTER PROGRAMS 4.5 MAN-YR 2.5 MAN-Y R 18% 

TOTAL 4.5 MAN-Y R (EST) 3.7 MAN-YR 

2. MACHINE TIME 
- COMPUTER COST/Ml N $7/MIN (S/3701 $. 51MI N (MDAC PM-l) 
- RATI 0: TOOL TO REAL-TIME f&l:1 4.5:1 OVER 
-AVERAGE REAL-TIME RUN 1 Ml NUTE 1 MINUTE 99% 
- NUMBER OF RUNS 650 650 

TOTAL COST $273K - $l!xm 

TOTAL COSTS 
AT tXIK/MAN-YEAR 5ODK 185K 62% 

Figure 6 
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NASA ISIS* 

W. Joseph Berman 
University of Virginia 

The National Aeronautics and Space Administration Interactive Software 
Invocation System (NASA ISIS) is being developed as the central resource of the 
Multipurpose User-oriented Software Technology (MUST) project. The goal of 
MUST is to assist in the development of flight software by providing a 
comprehensive collection of software tools such as requirement analyzers, 
simulators, static code analyzers, compilers, assemblers, dynamic code 
analyzers, test case generators, flow charters and report generators. The 
function of NASA ISIS is to facilitate the use of these tools and to guide the 
programmer/engineer through an orderly development of flight software. 

The major components of NASA ISIS were motivated by considering the flight 
software development process in detail. This analysis showed that the most 
important function which the system must perform is to manage the large number 
of data files (e.g., source modules, object modules, test data and device 
characteristics) used during software development.. In NASA ISIS, these data 
files are organized into an indexed, hierarchical file system. This file 
system also allows the storing of multiple "versions." of any file, facilitating 
both experimental development of a file and retention of a file's history. 

The data files which are used in developing flight software can be divided 
into three basic classes. Source modules and documentation are common examples 
of textual data. In NASA ISIS, textual files are structured as numbered lines 
and a text editor allows processing by both linenumber and content criteria. 
It was found that numeric data files are almost always arranged in a tabular 
format and that the processing requirements are typically quite straightforward. 
This suggests that a full database management system is probably unnecessary and, 
therefore, NASA -ISIS provides only a simple and elegant retrieval capability for 
tabular files. Finally, many data files do not require interactive processing 
(e.g., object modules). 

Once the user has stored the necessary data for a given package, it is 
often necessary to transform this data into a format acceptable to the tool. 
While this capability is functionally no different than the interactive editing 
facilities, it implies the further capability of being able to store complex 
editing sequences for use by those uninterested in the details of the 
transformation. In NASA ISIS, these transformations are termed "invocations". 

Despite the apparent diversity of the file management, text editing, 
data manipulation and invocation components of NASA ISIS, there are many 
primitive functions in common. To take advantage of this overlap and to 
present the user with a cohesive interface, NASA, ISIS was designed as a single, 

*Research supported by NASA Contract NASl-14862. 
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unified system controlled by an "interactive programming language". This 
language is based upon many of the precepts of PASCAL, but has been especially 
tailored to the interactive environment and to the special capabilities of the 
rest of the system. Since this language allows the use of numeric and string 
literals, types and type constructors, variables, and terminal communications, 
it is significantly more powerful than most desktop calculators. In addition, 
the system actually compiles the language into an intermediate code for 
execution by a virtual machine. This allows both immediate execution of input 
lines ("command mode") and the storing of the intermediate code for later 
execution (Vcompiled mode"). 

In addition to suggesting the major components of the system, the study of 
the flight software development process made it clear that any implementation 
of NASA ISIS needed to have certain characteristics. Since there are several 
groups within NASA which produce flight software and these groups use different 
computing systems, it is very important that the system be as transportable as 
possible. To achieve transportability, the current version of NASA ISIS has 
been written almost exclusively in a carefully chosen subset of PASCAL. In 
addition, the implementation takes as little advantage of the host operating 
system as possible and the interface to the operating system is isolated to a 
single assembly-language module. 

Another aspect of the implementation of NASA ISIS is that it should be as 
adaptable as possible. As an interactive system is implemented and made 
available to its user community, there is inevitably feedback from the users on 
improvements to the system. In the current version of NASA ISIS, the 
separation of the parsing and execution phases considerably simplifies changes 
in syntax, and the high degree of modularity (both at the functional and coding 
levels) allows for significant alterations with only localized impact upon the 
system. 

The current version of NASA ISIS is only an engineering prototype. By 
first implementing a prototype, it is possible to test many ideas and to 
determine the system's utility before committing significant resources to the 
development of a production model. As of November 1978, the engineering 
prototype is substantially complete and is currently being evaluated at NASA 
Langley Research Center. By February 1979 it is expected that this prototype 
will be completed and distributed to the MUST user community for further 
testing and evaluation. Finally, during the spring of 1979 the system will be 
re-hosted from its current CDC implementation to an IBM 370/158 to determine 
the system's transportability. 
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bIASA ISIS 

IMPLEMENTATION 

. ENGINEERING PROTOTYPE 

TO TEST IMPLEMENTATION TECHNIQUES 

TO ALLOW USER FEEDBACK FOR DESIGN OF PRODUCTION 

SYSTEM 

. ADAPTABILITY 

BY SEPARATION OF PARSING AND EXECUTION PHASES 

BY MODULARITY OF DESIGN AND OF CODING 

. TRANSPORTABILITY 

BY USING A SUBSET OF PASCAL AS IMPLEMENTATION 

LANGUAGE 

BY USING HOST OPERATING SYSTEM AS LITTLE AS 

POSSIBLE 

BY ISOLATING HOST OPERATING SYSTEM INTERFACE 

TO SINGLE ASSEMBLY-LANGUAGE MODULE 

. STATUS 

NOVEMBER 1978 : BEGINNING EVALUATION AT LARC 

FEBRUARY 1979 : DISTRIBUTION TO MUST USERS FOR 

EVALUATION 

APRIL 1979: TEST TRANSPORTABILITY TO IBM 370/158 

Figure 1 
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NASA ISIS 

I NTERACTI VE PROGRAMMING LANGUAGE 

INITIAL DESIGN: INTERPRETED PASCAL 

MODIFICATIONS: 

DUE TO INTERACTIVE ENVIRONMENT 

. USER PROMPTED FOR DECLARATION OF UNKNOWN IDENTIFIERS 

. USER MUST EXPLICITLY ERASE UNWANTED IDENTIFIERS 

l BUILT-IN TYPE OF STRIliG 
l MULTI-STATEMENT CONTROL STRUCTURES (LIKE REPEAT-u!jTIL) 

l PROCEDURES/FUNCTIONS ARE PREPARED AS TEXT, THEN 

COMP I LED 

DUE TO OTHER NASA-ISIS CAPABILITIES 

l SPECIAL STATEMENTS TO CONTROL FILE MANAGEMENT, 

DATA EDIT.1 NG AND -JOB SUBMITTAL 

Figure 2 
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NASA ISIS 
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SOFTWARE SYSTEMS DEVELOPMENT AT GRUMMAN AEROSPACE CORPORATION 

JACK ROSENBAUM 
GRUMMAN AEROSPACE CORPORATION 

Embedded Software Systems, including on-board avionics systems, trainers, 
simulators, and automated test equipment, are a major product line at Grumman 
Aerospace Corporation. In recognition of the marked increase in software intensity 
on these projects, a'new department was formed to focus attention on, and develop 
a unified corporate approach to embedded software development. As indicated in 
Figure 1, the Software Systems Department (SSD) interfaces directly with Engineering 
and Logistic Support groups to establish Functional Requirements and the necessary 
hardware/software trades and then designs and develops the appropriate software 
for integration into the total system. 

In accordance with its charter, SSD is now creating a software development 
environment, outlined in Figure 2, that spans the entire process from initial 
functional requirements through installation and life cycle maintenance. Figure 3 
is an overview of generic embedded systems life cycle and associated documentation 
milestones. The actual chart is detailed to show each major step, identifiable 
task, and contractually required reviews and documents, as specified in Navy and 
Air Force Mil-Spec documents. The chartis the basis for the SSD Manual and Life 
Cycle approach, and is reflected in departmental policies, guidelines, and manage- 
ment plans. The key elements of our approach to developing software are outli,ned in 
Figure 4. The current procedures are clearly in the direction indicated in DOD 
Directive 5000.29. 

Another major activity includes the development of computer-aided system for 
software development, outlined in Figure 5, that supports our planned approach. 
The automated environment currently includes a series of requirements development, 
design development, configuration management, and documentation tools on a large 
central host (IBM/Amdahl) installation that allows interactive use a project sites. 
Program development and testing for Trainers is generally performed on-site in 
dedicated Software Development Facilities incorporating the same hardware as the 
target configuration. A development facility utilizing FASP on a CDC computer is 
also available. Programming tools that support the development process are designed 
to interface with, and provide status and "as built" data to the IBM/Amdahl for 
project and configuration management. 

The key software tools currently installed on the system, and their application, 
are described in Figure 6. Our basic philosophy is to procure available systems 
wherever possible, and integrate them into our overall system. Internal development 
is undertaken to provide interfaces or to satisfy specific needs normally not 
addressed in currently marketed systems. Wherever possible, tools developed on 
projects are generalized and included in our facility. An ongoing technology 
'project has as its major objective the long range development of a generic environment. 
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EMBEDDED SYSTEM DEVELOPMENT (SOFTWARE PERSPECTIVE) 
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SOFTWARE SYSTEM LIFE CYCLE OBJECTI’VES 
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KEY LIFE CYCLE STANDARDS 
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Figure 4 
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SOFTWARE DEVELOPMENT ENVIRONMENT 
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LANGUAGE TOOLS 

WHERE THE LEVERAGE IS 

Fred H, Martin 
Intermetrics, Inc. 

SUMMARY 

This paper contains an overview of the "Tools and Language 
Processors" Session of this workshop. 

DISCUSSION 

The life cycle development and utilization of embedded software 
can be viewed as a succession of phases with appropriate feedback 
among the phases. Roughly speaking, these can be identified as 
requirements, specifications, design, code and test, validation 
and maintenance. It is now generally acknowledged that at least 
50% of the life cycle cost must be allocated to activities 
following initial release of the program, viz., for validation 
and maintenance. This would include listings and support documen- 
tation for maintenance, independent verification and validation, 
operational support, program enhancements and general maintenance. 
Where the life time of the software is expected to be very long, 
e.g., 20 year military systems, the figure 50% is 

'probably conservative. 

All of the software phases have been the subject of intense 
study over the past few years. Significant results are usually 
manifested by the appearance of a "software tool" to aid in 
accomplishing a particular phase. Indeed, these tools are the 
subject of this workshop. 

It is interesting to note the potential cost payoff within 
each phase, i.e., what contributions can reasonably be expected 
with respect to lowering overall software costs. (Improving 
reliability is viewed as an important factor in lowering cost.) 
It is in this context that the leverage of a tool, or the ratio 
of eventual benefit to initial cost must be kept in mind. 
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Intuitively, the further back in the chain of software 
development one can introduce an improvement, the greater will its 
cumulative effect be in improving the process, thereby reducing 
the cost. Obviously, a coding error caught by a compiler will 
necessitate the cost of a recompile, probably orders of magnitude 
less, however, than the cost associated with finding the hidden 
bug during validation, or worse -- operations. Receding further 
back from the coding process into design, specifications or 
requirements should produce correspondingly larger savings. 

But what of the practicability of such improvements and the 
necessary cost to achieve them? Without a doubt, the coding 
process is the most mature and the most amenable to immediate 
results. A veritable revolution has occurred in the last 10 years 
with the recognition of the value of structured programming and 
design. The readily available tool has been -- language. Capable 
higher-order languages with strict data typing, finite control 
structure and inherent redundancy have both improved programmer 
efficiency and eliminated whole classes of errors. The elimina- 
tion of a family of errors can reduce dramatically the scope of 
necessary validation while at the same time improve, by definition, 
software reliability. 

Unfortunately, the connections between requirements and 
specifications to language, on the one hand, and language to 
validation, on the other, are still tenuous today. No satisfactory 
expression of requirements has yet emerged, and although many 
promising methodologies abound for specifications and design, the 
translation to higher-order language implementation (or execution) 
is still a human task. With respect to verification, deriving 
the domain of necessary tests for a non-trivial program which 
spans both operational requirements and potential anomalies is 
still an unsolved problem. Usually, it's simply a question of 
budgets. Validation must be a finite activity, and a large pro- 
gram can be validated to the tune of 5, 50, or 500 man years. 

While I'm not at all discouraged at the work being done in 
requirements, specifications and validation, and the excellent 
tools being developed and proposed, I believe that is it here -- 
in languages -- where the leverage is, i.e., the greatest payoff 
for the least investment. The reasons are simple; the problems 
are easier, the field is more mature and we are dealing with the 
final product itself, not what it could or should be, or how it's 
supposed to behave when stimulated, like a black box. 
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CONTRIBUTED PAPERS 

The papers in this session reflect very practical attempts 
to capitalize on the advantageous position that language has in 
the life cycle process. 

The first on "path expressions" recognizes that the source 
programming language is the best place to express the complex 
interactions necessary in real-time programming. Long ignored 
and relegated to the assembly language executive or operating 
system, several languages have attempted quite successfully (HAL/S, 
PEARL, CONCURRENT PASCAL) to bring the light of day to real-time 
control. The DOD-~ designs are now struggling with this important 
feature. Path expressions allow synchronization and interaction 
of shared resources to be expressed right within the static 
structure of a program and thereby in an apparent and understand- 
able form. The dynamics of asynchronous operations need not be 
first discovered when the program executes. 

Our second paper, again tries to place more information, and 
increased redundancy in the programming language, so as to catch 
automatically a larger class of errors and improve diagnostics. 
Attention is paid to reformatting the listing, providing hier- 
archical reports and to the preparation of tables for program 
analysis. Note the immediate results to be gained through the 
language and compiler. All the derived data concerns the actual 
product. Much of the analysis can be carried out automatically: 
it will reflect the current software immediately, and it is 
accurate. It is gratifying to me to see these features being 
added to PASCAL with the promise of more. One of the objectives 
in the HAL/S design was to "wring out" of the program source 
every conceivable aid toward understanding and verifying the 
flight software. 

The next paper is somewhat of a change of pace but actually 
within the theme. Most flight computers require assemblers and 
linkage editors for coping with the output of a compiler or for 
handling necessary assembler language code. Unfortunately, 
because most machines differ in detail, assemblers are written 
anew. The enhanced META Assembler described in this paper employs 
some of the powerful "front-end" techniques found in compilers and 
allows full user flexibility over variable form and content. This 
should reduce materially the cost and schedule for development of 
arbitrary assemblers. I understand the META Assembler is readily 
available and its rehostability and retargetability have been 
demonstrated. In a sense it is a basic tool, often overlooked 
in the context of language. 
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The fourth paper, in a way, is a synthesis of many of the 
points discussed here. The Universal Flowcharter is itself 
designed and built using the HOS methodology and the AXES specifi- 
cation language. Specifications have been implemented, for 
now, by hand in PASCAL. The result is a universal documentation 
aid which can flow chart any block-oriented higher order language. 
The charts should prove useful during design, verification, and 
maintenance. Once again, the power and versatility of language 
is evident. A formal grammar, expressed semantic rules, and 
inherent redundancy provide enough information for the automatic 
graphic algorithms and descriptive "concordances" presented in 
the paper. 

The final paper reminds us all that while programming languages 
offer great potential, it's the compilers that deliver reality, 
and compiler production has been very expensive, at best. In 
today's technology the compiler "front end" from source to 
immediate language (IL) is well understood and most modern 
compilers employ this machine independent "Phase 1". However, 
the IL must then be translated to a variety of target machine 
instruction sets through a code generating process. Since each 
target is usually quite different, much of the code generator 
must be built from scratch. 

This paper describes a method of designing a code generator 
using the latest software methodologies so that classes of machines 
can be paramaterized. This is accomplished by "hiding" the spe- 
cific details of machine architecture thereby rendering a substan- 
tial portion of the code generator target machine independent. 

The research described first translates the HAL/S IL (HALMAT), 
as an example, into a more amenable second IL for a particular 
class of machines. Thereafter, new code generators for that 
class can be implemented more economically. 
that a finite set of "second IL's" 

The implication is 
should suffice to cover most 

of the common machines. 

Work is continuing in developing a tool to generate automatic- 
ally good machine code from a defined IL. 

CONCLUDING REMARKS 

As chairman, I wish to express my appreciation to the 
contributors for their interesting papers. I look forward to 
the ensuing discussions at the Workshop. 
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PATH EXPRESSIONS FOR REAL-TIME PROGRAMMING 

R. H. Campbell 
University of Illinois at Urbana-Champaign 

Many aerospace embedded computer systems involve the design and construc- 
tion of system software requiring asynchronous processes, synchronization, 
co-ordination and communication between processes, and guaranteed performance 
within a set of real-time constraints. Such design is difficult, expensive 
and error prone. 

This paper presents research into mechanisms which aid the description 
and analysis of real-time aerospace software and which can be adapted to 
provide appropriate extensions to current programming languages. These 
mechanisms are based upon path expressions. An experimental language called 
PATH PASCAL was developed as a testbed to study the implementation and 
interactions of these mechanisms and to observe their use in a realistic 
environment. PATH PASCAL extends PASCAL to include concurrent processes, 
path expressions to provide synchronization and co-ordination, and an 
encapsulation mechanism which, together with the path expressions, provides 
synchronized access to shared, protected data. PASCAL was chosen because, 
in our opinion, it is a well-engineered compromise between expressiveness, 
generality, efficiency, clarity, and simplicity. 

To gain practical experience with these mechanisms, we are conducting 
two experiments. Several real-time systems programs are being written for 
a PDP-11, including I/O device drivers, schedulers, and network communica- 
tions. The execution times of these programs will be estimated and measured 
to provide statistics for research into deadlines. In a separate project, 
the language will be used by system programming students. Their experiences 
will provide valuable insights into the appropriateness of these mechanisms. 

The PATH PASCAL testbed has been successfully implemented together with 
both a simulated real-time environment and asynchronous I/O. The compiler 
translates PATH,PASCAL to an intermediate code which can be interpreted on 
a CYBER 175, or assembled into machine code for execution on a PDP-11. 
The feasibility of using Open Paths to specify synchronization has been 
shown by our implementation. A practical evaluation of this mechanism can 
now be undertaken and comparisons made with other synchronization techniques. 
The implementation and language can also be used to provide a basis for 
future experiments involving modifications to the synchronization mechanism 
and further language extensions. 

Future experiments will include more sophisticated Path expressions, a 
guaranteed deadline mechanism which provides a graceful degradation of 
service while maintaining the guarantee of meeting deadlines, error recovery 
mechanisms based on recovery blocks, language mechanisms to allow device I/O 

. . . 
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routines to be written in a high-level language and possible generalization 
of the mechanisms to include networks of systems. 

To conclude, PATH PASCAL is a feasible testbed for investigating 
mechanisms to synchronize concurrent processes in real-time aerospace systems. 
The language mechanisms we have implemented interact cleanly with the PATH 
PASCAL language and lead to a straightforward implementation. The PDP-11 
PATH PASCAL runtime system is only slightly different from that of ordinary 
PASCAL. PATH PASCAL is portable and can be used on a variety of computers. 
Finally, this experience indicates that similar modifications can be made 
to existing block-structured avionic languages. 

30. ’ 



PURPOSE: 

*Develop Language Mechanisms for Aerospace Systems. 

*Synchronize Co-operating Concurrent Processes. 

Separate Synchronization Specification ------- Open Path. 

Shared Data Structure and Encapsulation ------ Object. 

Concurrent Execution ------------------------- Process. 

*Real-Time Constraints. 

Figure 1 

MOTIVATION: 

*Increasing Complexity (Concurrency, Real-Time Constraints) causes 

Costly, Difficult and Error Prone Software Development. 

*Realistic Testbed for Experimentation: 

Observe Use of Language Mechanism. 

Pascal: Real Language. 

Small, Modifiable. 

Well-Engineered. 

Figure 2 

FLTTURE RESEARCH: 

*Alternate Path Notations. 

*Guaranteed Deadline Mechanism. 

*Error Recovery Mechanism. 

*Mechanism for Programming Device I/O Routines. 

*Networks. 

Figure 3 
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PROGRESS AND EVALUATION: 

*Path Pascal Language with Simulated Real-Time Environment and 

Simulated Asynchronous I/O. 

*CYBER 175: Interpreted Intermediate Code. 

*PDP-11: Executed Machine Code. 

*Open Paths are Feasible. 

*Practical Evaluation and Comparison is Possible. 

*Basis for Future Experiments. 

Figure 4 

FUTURE APPLICATIONS: 

*Real-Time Experimentation on PDP-11. 

I/O Device Drivers. 

Schedulars. 

Communications. 

Estimating and Measuring Execution Times. 

Deadlines. 

*Systems Programming Class Projects. 

Figure 5 

CONCLUSIONS: 

*Path Pascal Testbed Approach is Feasible. 

*Extensions to Pascal: 

Clean Interaction. 

Straightforward Implementation. 

Small Additions to Run-Time System required for PDP-11. 

*Mechanisms Suitable for Block-Structured Languages. 

Figure 6 
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8 
VERIFIABLE PASCAL 

Sabina H. Saib 
General Research Corporation 

Verifiable PASCAL contains enhancements to the programming language 
PASCAL designed to allow for more extensive error checking than is possible in 
PASCAL. The language is implemented in a processor that generates PASCAL. 

The extensions include: 

0 improved structures which are easier to write and result in 
more readable code 

0 executable assertions which can be used to report exceptions 
during testing and also can be used by a program verifier 

l data access restrictions which limit the access rights and 
operations on data 

a units qualifiers which declare the physical units of variables 
thereby making units consistency checking possible. 

VPASCAL source programs may be executed identically to PASCAL source 
programs after they have been processed by the VPASCAL preprocessor. Functions 
of the VPASCAL preprocessor include translation, generation of an enhanced 
source-code listing and static module hierarchy report, interface to the Soft- 
ware Quality Laboratory (SQLAB) verification tools, and reformatting of VPASCAL 
source code for program maintenance. The services implemented include: 

1. Translation of all VPASCAL control statements into standard 
PASCAL while passing other PASCAL statements ummodified. 

2. Indented and annotated listing of the VPASCAL source code. 

3. Module hierarchy report and directory showing the static nesting 
structure of modules and a directory to the indented listing for 
module sections (i.e., heading, LABEL, CONST, TYPE, VAR, and 
statement). 

4. Assertion statements translated into executable form selectively; 
the default is to change assertions into PASCAL comments. 

5. Interface file prepared for input to other SQLAB tools, thereby 
permitting program verification analysis. 

6. Reformatted source code to improve legibility in program main- 
tenance. 
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IMPLEMENTATION OF VERIFIABLE PASCAL PREPROCESSOR 

Figure 1 

VERIFIABLE PASCAL PROCESSOR CAPABILITIES 

TRANSLATES VERIFIABLE PASCAL TO STANDARD 

PASCAL WITH OPTIONAL EXPANSION FOR 

EXECUTABLE ASSERTIONS 

TRANSLATES STANDARD PASCAL TO VERIFIABLE 

PASCAL 

GENERATES INTERFACE FILE (FOR OTHER 

SQL TOOLS) WITH ANALYZED TEXT AND SYMBOL 

DESCRIPTIONS 

GENERATES FORMATTED LISTING, TEXT 

DIRECTORY AND MODULE STRUCTURE, 

LANGUAGE USAGE 

LARGE APPLICATIONS INCLUDE 

l PASCAL COMPILER - 10000 LINES - 

139 PROCEDURES - 8 LEVELS 

0 VERIFIABLE PASCAL PROCESSOR - 

6000 LINES - 170 PROCEDURES - 

3 LEVELS 

VERY EASY TO ADAPT FOR LANGUAGE CHANGES 

EASY TO ADAPT FOR'CHANGES IN PROCESSING 

REQUIREMENTS 

Figure 2 
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HOW VERIFIABLE PASCAL DIFFERS FROM STANDARD PASCAL 

CONTROL STRUCTURES WITH UNIOUE TERMINATORS 

(IF...END IF, FOR...END FOR) 

CONTROL STRUCTURE EXTENSION 

(IF...~RIF...ELSE...END IF) 

EXECUTABLE ASSERTIONS 

(ASSERT, INITIAL, FINAL) 

DATA ACCESS CONSTRAINTS 

(INPUT. OUTPUT) 

PHYSICAL UNITS SPECIFICATION 

(UNITS) 

TRANSLATION OPTIONS 

Figure 3 

WHY VERIFIABLE PASCAL 

PASCAL ALREADY HAS FEATURES AMENABLE TO VERIFICATION 

TYPE CHECKING 

CLEAN SYNTAX 

CALL CHECKING 

PASCAL HAS USEFUL DATA STRUCTURES 

RECORD 

POINTER 

PASCAL COMPILERS ARE BECOMING COMMONLY AVAILABLE 

PASCAL IS MISSING SOME FEATURES 

AUTOMATICALLY INDENTED LISTINGS 

DATA ACCESS RIGHTS 

UNITS SPECIFICATIONS 

LOGICAL ASSERTIONS 

PASCAL ALSO HAS A FEW SYNTAX PROBLEMS 

AMBIGUOUS IF STATEMENT 

INTEGERS USED FOR BOTH STATEMENT LABELS AND CASE 
SELECTION 

Figure 4 
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VERIFIABLE PASCAL EXAMPLE 

BEGIN (* COUNT COLORS *) 
INITIALIZE I c* LOOP 
READALPHA ( MAME 1 I 
WRITELN c ‘1 NAftE a 
UHILE NOT EOF DO 

lo END OF FILE l I 

HAIRa I I 

I a REAOALPHA ( HAIR ) 
. WRITELM ( L l 8 NlflE I HAIR 1 I 
. NjMBERREADf I = Mu~BERREADs + 1 i 
, ANS I= FALSE I 
. FOR COLOR := BLACK 10 NHIrE DO 
. . IF HAIR = COLUMNS t COLOR 1 TUEY 
. . . COUNT L COLOR 1 I= CO,uRT L COLOR I + 1 I 
. . . ASSERT ( COUNT L COLOR 1 * 0 1 AND ( COUNr [ COLOR I (8 NUHBERREAD 1 1 
. . . ANS := TRUE 

fMDLF 
1 END FOR I 
, ASSERT lrNs 
. . FAIL 
. . . WRItELM ( II CARD IN ERROR a ; MAHE , I m , HAIR 1 I 

END FArL ; 
: ~EADALPHA ( NAME 1 I 
END HHILE I (* PRINT RESULTS *) 
NRITELN I 
FOR COLOR := BLACK TO M4ItE DO 

MRIfrELN ( m F(IR COLOR s , CgLu!ftiS r COLOR i 
END FOR I 

, rCOuNt fs' , COUNT f COLOR 1 I I 

OUTpUtS COUNT ) 
END J (’ COUNt COLORS 1) 

Figure 5 

GRAMMAR FOR VERIFIABLE PASCAL IF STATEMENT 

<XFSTATEHENT+ = 
fIF: <PREDICATE, :THENf <STATEHENTLIST> 
‘C -ORIF; <PREDICATE, iTHEN <STATEHENTLISl, I+ 
[ t :ELSE=. <STATEHENTLIST, 1 v VIOE 1 
:ENDIFi 

Figure 6 
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A NEW META ASSEMBLER 

K. V. Smith, Z. Jelinski, J. B. Churchwell, and S. Park 
McDonnell Douglas Astronautics Company-West . . * 

This paper describes major improvemehts to the existing Meta Assembler 
in order to provide a generalized system for the assembly of computer programs 
for target machines. The system is host portable and target reconfigurable. 
The improvements provide a user-oriented syntax definition capability. This 
is accomplished by adding an assembly language translator which allows a 
user to describe any assembly language syntax in a meta language. A generalized 
linkage editor is developed to provide a flexible tool for the user to link 
assembled programs and make changes, modifications and corrections to individual 
modules without the necessity of reassembly of the whole program each time. 

The concept of the Meta Assembler originated at NASA MSFC some six years 
ago and over the last several years the system was developed and applied to a 
number of hosts and target machines. The idea was to have a software develop- 
ment tool resident on a host machine to prepare programs for a number of target 
machines thus saving assembler development costs for each of the targets. 

In spite of its usefulness, the system had some serious shortcomings 
namely the Meta Assembler used a language independent syntax for directives 
(pseudo ops), macros and labels because these features could differ greatly 
from one assembly language to another. For this reason, existing assembly 
language programs had to either have the source for these differences rewritten 
or a syntax preprocessor had to be written to change them. 

NASA has therefore sponsored a major enhancement to the Meta Assembler. 
The new Meta Assembler will now include a user oriented syntax definition 
capability. This state of the art technique includes the assembly language 
definition using a meta language. A statement in the meta language may define 
user types, parameters, table entries, target machine characteristics, 
assembler language symbols, semantic functions and comments. The meta language 
definition is processed by the meta language processor, ALLDEF,building a "dic- 
tionary" which provides the basis for the assembly process. A generalized parser- 
ALLTRAN will complete the translation process by performing the alternative first 
pass of the cross assembly. The output of the generalized parser will be an 
intermediate language (IL) data set such that the existing second pass 
of the Meta Assembler can complete the cross assembly by converting the IL into 
the object data file and generate a program listing as shown in Figure 1. A 
second enhancement task is to construct a Generalized Linkage Editor which is a 
multi-function utility designed to aid the Meta Assembler user in the creation 
and maintenance of software systems built from Meta Assembler formatted object 
modules. The result of this effort will be a single Meta Assembler program and 
a Linkage Editor program which operate in the environment of a large scale com- 
puter and support software development for flight and ground checkout computers. 
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META ASSEMBLER CONFIGURATION 

“SER ORIENTEDSYNTAX OEFINITION EXTENSION 

T 

SYNTAX 
OEFlNlTlON - 

META 
b LANGVAGE 

PROCESSOR 

SEMANTIC 
DEFINITION - 

Figure 1 

CURRENT META ASSEMBLER 

ALLDEF PROCESSOR 
A ~~ LLOEF AssEMsL .ER 
PI ROCESSOR OlCTlON ARY 

r----- _--- 
--- 1 

Figure 2 
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ALLTRAN PROCESSOR 

f-J 2c-l 

PARSER 
I I I I 

II \ 

Figure 3 

FLOW THROUGH THE GENERALIZED LINKAGE EDITOR 
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A UNIVERSAL FLOWCHARTER 

J. Rood, T. To, and D. Hare1 
Higher Order Software, Inc. 

10 

A Universal Flowcharter has 'been developed for the MUST system [l]: The Flowcharter was 
specified in [2] using the.HOS control-tree specification language (c.f. [3]) and has been 
implemented in the PASCAL programming language. Given a description of an input programming 
language grammar, the source code of a program written in that language and a partial sem- 
antic description of the language, the Flowcharter acts as a graphic documentation tool 
for that program. Versions using a HAL/S grammar and a PASCAL grammar are currently running 
on the MUST system. Two types of output modes are available: line-printer output and 
CALCOMP plotter output. 

Instead of control flow being represented by lines that loop back on themselves at certain 
points, the output of the Flowcharter has a tree format appropriate for representing the 
control flow in a structured program. 

The algorithm used by the Flowcharter (see [S]) is new in the sense that the syntactic 
analysis performed makes use of extensive semantic information too. The description of the 
input programming language granunar is augmented for each production rule. in the grammar with 
a semantic rule which describes the relevant semantic contents of the corresponding syn- 
tactic construct. Thus, for example, corresponding to a syntactic rule for the standard 
IF . ..THEN.. -ELSE statement is the semantic information which specifies that this is a 
conditional statement and is to be plotted accordingly. The Flowcharter performs an 
LR(l) bottom-up parse on the input program, gathering the semantic information as it goes 
along. Control-flow information is retained by substituting parts of the input program 
into standard "templates." The decisions as to exactly which type of template and in 
which form the substitutions are carried out, depends on the accumulated semantic infor- 
mation. Nested substitutions of the templates result in a tree-representation of the 
program which is used to drive the plotting (or printing) of the Flowcharter output. 
Seven types of templates are currently used, corresponding to seven basic control-flow 
structures: block statements, conditional statements, iterative statements, concurrent 
statements, non-deterministic choice statements, and procedure declarations pee figures]. 

Other semantic information, including the names of variables defined locally to a pro- 
cedure, those assigned in a procedure, those referenced in a procedure, and which pro- 
cedure calls what other procedures, is collected at each production. At the end of the 
parsing, these data are collated and a set of "concordances," one for each procedure, 
is produced. The concordance of a procedure is printed after its control-flow structure 
is plotted. 

The plotting/printing is basically driven by the templates. For each specific type of 
template, a routine is called to handle the corresponding construction. Nested templates 
are printed/plotted in indented columns so that the control flow of the program will appear 
explicitly. In addition, many parameters, such as the number of columns to be printed/ 
plotted on a page, the choice of a long or short concordance, and detail tailoring of 
printing/plotting formats can be specified by the user. 

REFERENCES 

1. Straeter, T.; Foudriat, E., and Will, R.: MUST - An Integrated System of Support Tools for 
Research Flight Software Engineering. A Collection of Technical Papers, AIAA/NASA/IEEE/ACM 
Computers in Aerospace Conference, Los Angeles, CA, Nov. 1977. 

2. Harel, D.; and Pankiewicz, R.: A Universal Flowcharter. TR-11, Higher Order Software, 
Inc., Nov. 1977. 

3. Hamilton, M.; and Zeldin, S.: AXES Syntax Description. TR-4, Higher Order Software, Inc., 
Dec. 1976. 
~-. .- -. 
*Number in brackets indicates reference. 
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flowchart = flowcharter(prog; tables,w) 

flowchart = plot(tree, concordance) (tree, concordance) = analysis(prog,tables,w) 

Figure 1 

Though simple to read, structured design diagrams 

offer the fvllowIng advantages; 

Clear presentation of the block structure 

and levels of nesting in a program, 

Full illustration of the decision structure 

and flow of control in a program. 

Comprehensive tabulation of the scope of 

variables and functional and data depen- 

dencies amonn modules. 

Automated documentation of programs to promote 

standardization and expediate verification, 

Figure 2 
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FLOWCHARTER SPECIFICATION 

0 HOS .methodology 

0 Specification language (AXES) 

0 Equivalent control map representation 

l Separates specification from implementation 

w Algorithm specified was free of serious problems 

w Algorithm based on well developed theory of parsing 

w Use of embedded metasymbols in program text 

w Algorithm, specified to receive variable programming 

language definitions as input 

Figure 3 

FLOWCHARTER IMPLEMENTATION FLOWCHARTER IMPLEMENTATION 
1. Analysis 

Flowcharter (FC) parses input 

text using LR(l) grammar 
0 

2. Plot 

FC printed output is naturally 

represented by a tree 

Analysis is driven by a set of 

input tables BNF, "BSF", etc. 
w Plot uses recursive procedures 

to go from linear represen- 

tation to tree representation 
Each production rule has a 

semantic template associated 

with it 
0 Tree representation used to 

drive printing in real time 

Each parsing reduction substitutes w User parameters control output 
text into template format 

Final output of analysis is linear w 
program text with embedded metasymbols 

"Concordance" contains symbol 

reference information 

Figure 4 
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11 
THE APPLICATION OF SOFTWARE ENGINEERING TECHNIQUES TO THE 

DESIGN OF RELATIVELY MACHINE-INDEPENDENT CODE GENERATORS* 

Robert E. Noonan 
College of William and Mary 

Patricia Timpanaro 
Computer Sciences Corporation 

A serious problem in providing high level language support for embedded 
computer systems is the ability to construct code generators for these machines 
quickly, cheaply, and reliably. At the current time, HAL/S is the NASA stand- 
ard programming language for flight software. The first phase of the HAL/S 
compiler produces an intermediate code called HALMAT, which is basically in the 
form of triples. A cross-compiler for HAL/S can be constructed by combining 
the first phase of the compiler with a HALMAT-to-machine-language translator. 
The problem is to build these code generators so that as much of the code gen- 
erator as possible is reusable in moving from one machine to another. 

The research undertaken was to apply the techniques of software engineering 
to the design of such code generators. The software design methodologies used 
included: the Jackson design methodology, hierarchical machine design, infor- 
mation hiding, composite design, and iterative enhancement. 

The initial design combined the notions of information hiding and hierar- 
chial machine design in such a way that each level of the design tries to hide 
some design decision from the levels above it. Specifically, this approach was 
applied to hide the details of the architecture of the machine; that is, two 
one-address, single accumulator machines would have large portions of the code 
generator identical. Jackson's methodology was used for the design of the 
input (HALMAT) routines. A complete implementation of a minimal HAL subset was 
implemented. As additional features were implemented, the overall design and 
modularity of the code generator was reviewed and improved. 

The current design (essentially, the second iteration) consists of a two 
phase mapping. First, HAIMAT is translated to a hypothetical, machine language 
known as 7UP; this machine has a single accumulator, no index register, and 
one-address instructions. The second phase maps 7UF to machine language, in 
our case, an Intel 8080. 

Most of the effort-resides in the HALMAT to 7UP translation. This process 
need only be done once for all machines of similar architecture. In this case, 
only the 7UP to machine code translator needs to be rewritten. 

At the current time, research is concentrating on the development of a 
software tool to simplify the complex case analysis needed to generate good 
code. This has resulted in the development of a non-procedural, problem- 
oriented programming language called CGGL (Code Generator Generator Language). 
The output from a CGGL compilation is a PASCAL program for generating machine 
code from an intermediate code. Preliminary results from the use of this tool 
are very encouraging. 

*This work performed under NASA contracts NAS l-14972 and NAS l-14900. 
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HAL Compilation System 

Figure 1 

CODGEN 

TEMkATE I \ \ 8080 

HALMAT 
SUPPORT 

8080 
SUPPORT SUPPORT 

Logical Structure of the Code Generator 
Figure 2 

46 



- 

Generator 5 1 11 
Code Genera&o-r 311 3 211 
Miscellaneous_ 
Template 2 3 1 1 1 ~~ 
7UPAdd~ress. Manager 2 2 1 

Fanout of Module Classes 

Figure 3 

Notation: ACC = accumulator PC = program counter 
EA = effective address CC..;) = contents of . . . 

Opcode 

0 

1 

3 

4 
6 
7 
8 

11 

18 
19 
20 

Mneumonic 

STORE 

LOAD 

JFALSE 

CALL 

RETURN 

ADD 

CNEQ 
SUBSCR 

SAVE ADDR - 
LABEL 

Interpretation 

C(ACC) + C(EA) 

C(EA) + C(ACC) 

EA + C(PC) 

if C(ACC) = false then EA + C(PC) - ~- 
subroutine call 

return from a subroutine 

C(ACC) + C(EA) + C(ACC) 

(if C(ACC) # C(EA) then true else false) -+ C(ACC) - ---- 
C(ACC) + EA + C(ACC) 

C(ACC) are saved in an address temporary 

associate the PC with the address field 

Sample 7vp Operations 

Figure 4 
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HAL/s A =A+l; 

HALMAT Operation Operand 1 
IADD =T,5 
IASGN VAC,*-1 

Operation 
LOAD 
ADD 
STORE 

Given: SYT Table 

2: .". 

HALMAT 

Operand 2 
LIT,3 
SYT,5 

Tag Entry 
SYT 5 
LIT 3 
SYT 5 

Sample Translation to 7W 

Figure 5 

LIT Table 

41: .f. 

I CGGL 
>I 

Possible Uses of CGGL 

Figure 6 
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12 
AN AVIONICS SOFTWARE DEVELOPMENT EXPERIENCE 

L. C. Klos 
General Dynamics Corporation 

The Fire Control Computer on the USAF F-16 aircraft provided the opportu- 
nity and requirement for a new avionics software development program. The Fire 
Control Computer provides weapon computations, pilot interface, and system 
integration functions for the avionics system. The computer is required to 
manage an external data bus and support real-time multiprogrammed applications 
at various execution rates. It is programmed in the J3B-2 dialect of the 
JOVIAL language under stringent memory and execution time usage restrictions. 

The presentation covers the impact which these constraints had upon the 
developing software and upon the tools which were used to support that develop- 
ment. The tools used include a graphical aid to software partitioning, an 
interface management data base, an interface data base processor which auto- 
matically generates JOVIAL common data areas, a source code indenter, a stand- 
ards checker, an IBM 370 host computer debug facility, a JOVIAL flowcharter, 
configuration management procedures with automated support, and a hot-bench 
dynamic test station for flight simulation and functional checkout. These 
individual tools met with varying degrees of success and required varying 
degrees of effort in implementation. Directed flowgraphs and associated com- 
puterized interface management for example, were relatively difficult to use 
but were judged to be worthwhile and successful. Use of these techniques 
materially aided partitioning and structuring of the software in the design 
stages and helped to reduce implementation and checkout time. The hot-bench 
dynamic test station and other laboratory facilities were also quite successful. 
Real-time simulation of the aircrafts external environment and pilot interaction 
with the simulated system allowed realistic tests of the integrated software 
in a controlled and observable environment. The standard module option/host 
debug facility, however, required significant effort in use but was much less 
successful. This facility allowed modules to be written in a standard form 
with all input and output data provided as formal parameters in the module 
calling sequence to facilitate checkout on the IBM 370 host computer. A later 
step converted selected formal arguments into common data area parameters for 
implementation efficiency. 

The presentation also covers the apparent future of avionics software from 
a tool requirement viewpoint. The proliferation of microprocessors into avion- 
ics causes problems in communication and execution management, as well as in 
maintainability. The tools used on the current F-16 program in most respects 
will be suitable for future systems. Partitioning of software and interface 
management will become increasingly important as avionics systems become more 
integrated and computerized, Both totally software and hot-bench simulations 
will find increasing use in the modeling and testing of candidate system 
architectures. 
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I I I 

SYSTEMS INTEGRATION LABORATORY (SIL) 

l THE SlL CONTAINS ACTUAL AVIONICS SYSTEMS HARDWARE IN A MINICOMPUTER SUPPORTED ENVIRONMENT. 
SPEClFlC SYSTEMS AN0 CAPABILITIES PROVIOEO ARE: 

. OVNAMICS TEST STATION lOTSI 

- HARkIS COMPUTER BASED SIMULATION 
OF AIRCRAFT AN0 ENVIRONMENT 

-ACTUAL AVIONICS HAROWARE IS 
EXERCISED 

- REAL-TIME INTERFACE DATA RECORDING 
ISPROVIOEG 

. AVIONICS EGUIPMENT BAY (AEBI 

- SlMPLlFlEO AlRCRAFT SIMULATION USING AIRCRAFT COCKPIT SECTION 

-EVALUATES AVIONICS IN ACTUAL SPACE, ELECTRICAL AND COOLING ENVIRONMENT 

- EVALUATESSOFTWARE WIT” REAL RAOAR AN0 OPERATOR CONSTRAINTS 

. REAL-TIME MONITOR UNIT (RTMUI 

- PROVIDES OATA RECORDING OF INTERNAL COMPUTER PARAMETERS 

- UNIOUELV IDENTIFIES DATA AND TIME OF RECOROING 

Figure 1 

TRENDS IN AVIONICS SOFTWARE ARCHITECTURE 

THE 60’S P l BIG CENTRAL COMPUTER COMPLEXES 

. OO.A,.L SYSTEMS 

. ANALOG CONVERSION 

. EACH SUBSYSTEM HAS A PROCESSOR 

l OIGITAL MULTIPLEX COMMUNICATIONS 

l CENTRAL COMPUTER PROVIDESWEAPON 
LIELIVERY AN0 SYSTEM INTEGRATION 

THE FUTURE (?I l HIERARCHICAL COMPUTING NETWORKS GLOBAL MUX BUS 
I I I I 
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F-16 ARCHITECTURE OVERVIEW 

NAVIGATION 
l Air/Air Mirrilar 

FIRE-CONTROL 
COMPUTER 

l Air/Surface Attack 
l LCOS l+nncry 

- l Ensrpy Mnnaemnnt 

+, 
RAOAR 

HEAD-UP 
DISPLAY 

RADAR/E-O -’ 
OISPLAY 

l Multiplex Control 

lntsrfacs Via 
MlL.ST0.1553 
Dull Redundant 
Multiplex Bus 

OTHER . 
SYSTEMS 

Figure 3 

F-16 SOFTWARE DEVELOPMENT CONTEXT 

zzEil~~l--l7 

DETAIL DESIGN DATA AND COMPUTER 

PRODUCT DESCRIPTION INCLUDING 
INTERFACE LISTS AND PARTITIDNII’- 

Figure 4 
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TOOLS USED ,IN THE DEVELOPMENT 

TOOL OESCRIPTION 

1 . ATMS 1 WORD PROCESSING SYSTEM 

. DIRECTED FLOW GRAPHS 1 GRAPHICAL OESIGN TECHNIQUE 1 HIGH* 1 
l SYOIM 1 COMPUTERIZED INTERFACE MANAGEMENT 1 HIGH 1 

l JET JOVIAL EDIT AN0 TIDY 
- Source Formatting 
- Source Editing 
-Standard Module Option/Host Debug Facility ..~ 

STRUCTURED PROGRAMMING EVALUATION AN0 
AUTOFLDW ROUTINE 

- Structured Programming Standards Checker 
- Flowhart Generation 

HIGH 
MED 
LOW* - 

LOW 
HIGH 

l AWIP 

CONFIGURATION MANAGEMENT SYSTEM 

. JOVIAL 538-Z HIGH ORDER PROGRAMMING LANGUAGE 

. OTS 

l AEB 
. RTMU 

l CDMPALL 

REAL-TIME DATA RECORDING 

DIRECTED FLOWGRAPH WITH INTERFACE 

NAVIGATION SUPPORT COMPONENT - INTERFACE SPECIFICATION 
OUTPUT DATA SIGNALS 

SIGNAL LEL TYP HZ BLOCK SIGNALNAME 
RH”” F cl” N”6 RH” Y .._. - - .- - - - 
RHO2 i 50 NS05 RHO 7. 

“BEG CETOP ARRAY 

ARRAY CETOP 3 3 

CETOPXX 
CETOPXY 
CETOPXZ 
CETOPYX 
CETOPYY 
CETOPYZ 
CETOPZX 
CETOPZY 
CETOPZZ 

NS06 
NS06 
NS06 
NS06 
NS116 
NS06 
NS06 
NS06 
NS06 

COS CXX-EARTH TO PLAT 
COS CXY-EARTH TO PLAT 
COS CXZ-EARTH TO PLAT 
COS CYX-EARTH TO PLAT 
COS CYY-EARTH TO PLAT 
COS CYZ-EARTH TO PLAT 
COS CZX-EARTH TO PLAT 
COS CZY-EARTH TO PLAT 
COS CZZ-EARTH TO PLAT 

“EN0 CETOP \ 
WNOLNGTK F 6 NSOl WIN0 LONGTRACK 
WNOCRSTK F 6 NS07 WIN0 CROSSTRACK 
FN F 6 NS07 LOCAL GRAVITY 

GNOTRK A0 50 NS09 GRObNO TRACK 

GNOSPO F 2 NSlO GROUNO SPEEO 

TASXF F 25 NS13 TRUEAIRSPEEO FILTEREO X 
TASYF 
TASZF L 

25 NSl3 TRUE AIRSPEEO FILTEREO Y 
25 NS13 TRUE AIRSPEED FILTEREO Z 

OVALUE F 6 NS14 ‘O’VALUE 

FALTPMAZ A0 50 NS15 FLIGHTPATH MARKER AZIMUTH 

FALTPMEL A0 50 NSl6 FLIGHT PATH MARKER ELEVATION 

Figure 6 
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13 
FUNCTIONAL SIMULATION OF SPACE SHUTTLE FLIGHT PROGRAMS 

Arra Avakian 
Intermetrics, Inc. 

HAL/S is the computer programming language chosen by NASA for the Space 
Shuttle project. It was designed for space applications, and includes such 
features as vector-matrix arithmetic and real-time process control statements. 
Within the Shuttle programming context, HAL/S programs can execute in at least 
two distinct simulation modes as well as actual execution on a flight computer. 
The simulation mode closest to the flight computer involves compilation using 
the flight computer compiler (HAL/S-FC) followed by simulation on an interpre- 
tive computer simulator CICS). Although a very close reproduction is attained, 
the usefulness of the ICS mode of simulation is limited by its high CPU costs 
to small scale simulations and compiler checkout. Another mode of simulation 
is available which operates at the level of a HAL/S statement. Terms used to 
describe this mode are "functional simulation" (FSIM) or "statement level 
simulation" (SLS). Whereas the smallest unit simulated without environmental 
interaction in the ICS mode is one machine instruction, the smallest unit in 
FSIM mode is one HAL/S statement. FSIM is not a bit-for-bit simulation, so it 
operates with much greater efficiency. However, its accuracy is good enough so 
that almost all of the flight software algorithm checkout is performed under 
this mode of simulation. 

FSIFI involves the use of another compiler with a common language analysis 
phase but a separate code generator, the HA&L/S-360 compiler. Although the 
HAL/S-360 compiler generates 360 machine code, allowing execution to proceed at 
the full rate of the host 360/370 machine, interaction with a simulation 
monitor can occur at any HAL/S statement in a manner analogous to an ICS. 
Pseudo-real time can be maintained, so that interactions may occur at any de- 
sired time as well. A model of the Flight Computer Operating System (FCOS) 
is supplied by the compiler system, allowing full use of the real-time process 
control features of the language. The total effect is to simulate execution 
of the same HAL/S program compiled for and executing on the real flight com- 
puter under control.of its operating system. 

The key to the simulation monitor's control of HAL/S execution at the 
statement level is the "hook" instruction inserted between each statement by 
the HAL/S compiler. The "hook" instruction causes control to pass to a state- 
ment processor routine. This routine gives control to the monitor whenever 
conditions occur which have been previously established. Such conditions may 
be the execution of a specified ("hot") statement, or the arrival of a speci- 
fied pseudo-time. The statement processor advances the pseudo-time by a time 
cost computed by the compiler for each statement. 
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HAL/S-360 COMPILER SYSTEM OPERATION 

Compilation & Stand-Alone Execution ------------------------------------. 

DECK 
<*, 

v 
RUNTIME OSNS 
LIBRARY ’ w LINK 

ED ITOR 
u 

-r 
I 
I 
I 
I 

t 

I 
I 
I 
I 

Diagnostic FS IM Execution -------------------------~~~~~ 

1 DIAGNOSTIC LIBRARY + 

-i- 
I 

) FSIM 
EXECUTION * f:r 

t 1 
A 

4 
USER’ S 

/ I10 v 
USER’S + DUMPS + 
DIAGNOSTIC AND 
REQUESTS TRACES 

L 

KEY - 

0 Normal Compiler Operation 

* Compiler FSIM Support 

+ Runtime FSIM Support 

+ Diagnostic FSIM Monitor Operation 

USER’S 
I10 
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FSIM SUPPORT FUNCTIONS 
OBJECT DECK FCOS MODEL + 
i 

Code To Call - 
l Schedule 

Scheduler 
l Wait - 

l Cancel 
STMT HOOK * * l Terminate 
I 

Code for if 
. Update 
l Etc. 

;;J1T GooK * l Advance 
: Pseudo 

TIMING TABLE 
Clock 

B t 

ACTION 
l Detect Time 

IME USAGE 
Action 

i 
l Detect Y-lol~ 

_ 103 D 
Statement 

l Record 

RUNTIME 

3lM + 
NTERFACE 
ixits to 
3 IM Monitor: 

l Time 
l 88Hot” Stmt 
l FCOS 

l Begin 
l End 

Iall from 
5 IM Monitor: 

l Set Time 
l Signal 
l Event 
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PROVE 

A Tool For Software Verification 

Randall J. Varga 
The Singer Company 
Kearfott Division 

ABSTRACT 

PROgram Verification Equipment (PROVE) is a dynamic simulator 
used at Singer-Kearfott in the development of Advanced Avionic 
Software Systems. It is currently being used in the verification 
of the calibration and alignment algorithms for the Space Shuttle 
Inertial Measurement Unit (IMU). 

PROVE was developed to provide a low cost controlled environment 
for the verification of calibration algorithms and associated 
systems. The PROVE simulator is a significant improvement over 
previous techniques which were hampered by project unique 
hardware which interfaced the simulator with the operational 
system. 

INTRODUCTION 

As today's processors become more powerful, advanced airborne 
avionic systems are required to perform more tasks at faster 
rates then ever before. These additional functions mandate that 
software systems become increasingly large and complex, requiring 
more extensive checkout in order to verify satisfactory 
performance of their tasks during all operational phases. In 
fact, the complexity of the checkout required to verify the 
software increases exponentially with the size of the program 
(see figure 1 ). Thus finding an automatic timely method of 
verifying software is also an exponentially growing problem. 

At Singer-Kearfott software is verified by a multiple step 
process. First, the entire software package is designed in a Top 
Down Structured manner. This allows for a cohesive 
interrelationship of modules. This is then followed by extensive 
desk debugging of the individule modules. This includes static 
simulation on a large scale general purpose computer system. 
Considering the typical iteration rate for avionic systems 
(50-200Hzj, and the length of execution (upwards to 12 hours) the 
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cost of fully simulating the software on the large scale computer 
becomes increasingly high. In light of the cost factor, software 
modules should not be fully checked out by this method. The next 
step in verification prior to flight testing of the software 
package is dynamic simulation of the entire system. To 
facilitate this ,dynamic checkout a series of simulation systems 
have been developed by Singer-Kearfott over the years. These 
include a Digital Inertial Measurement Unit Dynamic Simulator 
(DIMUDS) (ref l), Communication And Navigation Dynamic Simulator 
(COMMANDS) (ref 2), as well as PROgram Verification Equipment 
(PROVE). 

OBJECTIVES OF PROVE 

In designing and building PROVE, several objectives were 
established. These objectives were: 

(1) The simulation must run in a real time environment. 
This requirement detects timing unique errors in the 
software modules. The types of errors which are isolated by 
this requirement are subroutine re-entrancy, cycle 
interference, and system time overload. 

(2) The entire software package must be tested. 
The necessity for this requirement is obvious. It mandates 
that every software module be fully verified prior to final 
system generation. Thus it prevents untested software going 
undetected merely because it is not needed for simulation 
checkout. 

3) The interface format must be the same as with the actual 
hardware. 

This requires the full verification of all sensor unique 
routines. All reformatting and scaling of the sensor data 
are performed and verified. It also alleviates the 
necessity of generating simulator unique interface routines 
merely because the interface format is different than the ' 
real hardware. 

(4) The simulator must be cost effective to operate. 
This is a double requirement. First the simulator must be 
inexpensive to build, operate, and modify. In addition, it 
should use commercial equipment as much as possible, 
eliminating the need for specialized test equipment and 
hardware. Second, simulation must not require an excessive 
amount of time to perform. That is, if due to model 
constraints, the simulator cannot be made to run in real 
time every effort must be made to minimize the excess of 
real time. 
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(5) The simulator must accurately model the actual hardware. 
This requires that given the same output from the 
operational system the simulator and the hardware must 
produce comparable results. There must be nothing known 
that the simulator does not model. Conversly there must be 
nothing modeled which does not occur in the actual hardware. 

To implement the PROVE concept Singer-Kearfott has chosen to use 
the Hewlett Packard 2100 mini computer. A significant factor in 
making this selection is the fact that the operational computer 
to which the PROVE was initially connected was also a HP2100 
computer. This significantly simpiifies the interfacing problem. 
The current implementation is shown in figure 2. 

ADVANTAGES TO PROVE 

Simulation approaches similar in nature to PROVE have been used 
at Singer-Kearfott for many years with great success. PROVE 
itself is being used on several projects currently under 
development, the most notable of which is the verification of the 
Space Shuttle IMU calibration algorithms. These projects have 
enjoyed many advantages over those that did not use PROVE. Some 
of these are described below: 

Verification of an operational software system employing PROVE, 
accuratly simulates the environment in which the system must 
operate. The digital interface between the operational system 
and the sensor hardware is modeled to be consistant with the 
actual hardware interface. This includes the data which are 
transmitted as well as their format. This reproduction of the 
interface allows the operational system to be fully verified. 
This not only includes the data reduction portion of the system 
but also the reformatting of the interface data which are 
required when the actual hardware is employed. In addition the 
software unique to the simulator is for the most part 
non-existant. The only module required is that which actually 
performs I/O between the simulator and the operational software 

4 system. With the exception of the true I/O routine which is 
checked out by means of static simulation and actual hardware 
runs, the entire operational software system has been verified 
before ever having been run with the actual sensor hardware. 

A further advantage of employing PROVE is that the entire 
software system is dynamically verified in a real time 
environment. This is possible because the PROVE creates the real 
time environment in which the actual system will operate. This 
is accomplished by employing a real-time clock-in the PROVE 
computer as a time referance. After the prescribed amount of 
time has elapsed the PROVE software causes an interrupt to occur 
in the operational computer by means of a dedicated I/O 
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instruction. This interrupt is seen by the operational system as 
if originating in the actual sensor hardware and is treated in 
exactly,the same manner. Thus the real-time features of the 
operational system are preserved and verified. 

Another major advantage in using PROVE is that it is a cost 
effective means of software verification. There are.several 
factors about the PROVE which make it cost effective. Among 
these is that all the hardware components which comprise PROVE 
are commercially available. This allows for the construction of 
PROVE in a timely fashion. There is no long lead time required 
for hardware development. The design costs of .the system are 
greatly reduced since there are no unique hardware modules which 
must be designed and built. 

As an illustrative example, let us examine the problems 
encountered by a typical project that did not employ the PROVE 
concept of software verification. This project's requirements 
were to control a sensor, process the data, and communicate with 
another computer. The interface with the other computer was over 
a parallel data line. For software verification purposes it was 
decided to use a specially designed hardware interface module 
(see figure 3) . This particular module had a lead time near 
that of the system development time. The obvious result was that 
the intercomputer communication software could not be verified 
until near the end of the project. In addition since the 
communication requirement was crucial to the system, there was 
strong schedule pressure to shorten the development time of the 
hardware. As a result of these problems and pressures the module 
was delivered .late and required the design engineer to maintain 
the equipment. Further the module proved to be unreliable and 
frequently failed. The net result was that the 
significantly 

project 
increased both cost and schedule 

Similar projects using the PROVE were delivered on 
projections. 

time and at 
projected cost. 

Since PROVE is built from commercially available equipment, there 
is no need to train personnel in it's maintainence since this can 
be readily obtained from the component manufacturers by means of 
service contracts. Another major factor in making PROVE cost 
effective is that if the components used in assembling the system 
are purchased, then there is only the initial outlay of funds to 
purchase the equipment and 
equipment 

no periodic rental charges. The 

recurring 
would be continuously available for project use without 
cost. 

Since the 
available 

PROVE system has been assembled 
components it 

using commercially 
was decided not -I ~.- . _I to employ simulator -. unique interrace naraware. The communication 

simulator 
between 

and 
the 

the operational 
standard I/O interface cards 

system is carried out over the 
available from the manufacturer. 

This allows the I/O interface to be completely modified by simply 
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changing the software interface routines. This makes the PROVE 
useable to other projects without having to reconfigure hardware 
modules. It also reduces the length of time required to change 
from one project to another. Project change is no more complex 
than reloading the computer and connecting another cable to the 
interface card (approximatly 5 minutes). 

Since the initial development of PROVE several enhancements and 
improvements have been made to the system. The most notable of 
these enhancements is the inclusion of failure simulation. It 
should be noted that in order to verify failure detection 
software using the end item a mechanism of artifically inducing 
failures at the system level is required. This is generally a 
difficult task and often requires hardware modification. This is 
accomplished in the PROVE computer by modifying the output as 
computed by the sensor model in a prescribed manner. This was 
mechanized by adding routines between the data formatting 
routines and the I/O routine (see figure 4 ). The setting of 
these failures is under operator control from the system input 
device. The operator selects the error he wishes to simulate and 
the time duration of the failure. The system then perturbs the 
output for the selected length of time. Since the modeling of 
the failure occurs after the formatting of the output data, there 
is no feedback to the sensor model and therefore no modification 
of the system output after the failure simulation is finished. 
In this manner intermittant hardware errors and hardware noise 
are simulated. This therefore verifies the error recovery 
modules in the system. 

PROBLEMS WITH SPACE SHUTTLE PROVE 

PROVE has been used at Singer-Kearfott for several with 
good results. 

years 
Thus 

encountered. 
far there have been no conceptual problems 

The only problem areas which have been encountered 
were peculiar to the particular These were 

-4 mainly 
implementation. 

limitations imposed by the architecture of the 9 

-.;h 
mini-computer used. 
studies 

As a result of these problems some trade off 
were performed on the design criteria for the particular 

implementaion. Because of these studies, certain design goals 
-_ were relaxed in 

timely fashion. 
order to produce a useable working system in a 

One of the first problems faced by the designers was the need for 
high precision in the computations. Because of the iteration 
rate and the length of execution of the 
determined that 

programs it was 
the mini-computer floating point format was not 

adequate. Errors in the computation due solely to round off were 
deemed unacceptable. For this reason it was d'etermined that 
certain critical sections of the sensor model had to be written 
in extended precision arithmetic. This had the disadvantage of 
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both increasing size and lengthing the execution time of the 
model. The increase in memory was minor (less than 100 words of 
memory). However the increase in execution time had a more 
significant impact on the system. Because of the increased 
execution time the simulator was unable to be made to run in real 
time. In fact the simulator has been forced to run 25% slower 
than real time. 

Since the simulator has been forced to run slower than real time, 
certain error conditions may remain untested. The primary 
condition which may go undetected is system time overload. This 
is because the operational system is allowed 25% additional time 
to complete it's assigned tasks. Therefore to detect a time 
overload condi.tion in the normal sense the system would have to 
be greater then 25% overloaded. This problem has been alleviated 
by not permitting the time loading of the operational system to 
increase above 80%. 

Another problem resulting from the slower execution of the 
simulator is the fact that the operational system will not be 
interrupted at the same point during simulation as when running 
with the actual hardware. This may allow non-interruptable 
routines to go undetected. The possibility of this type of error 
remaining in the delivered system was eliminated because the 
final step in software verification always includes full 
verification testing with the actual hardware, and at that point 
the error would be detected. 

FUTURE OF PROVE 

PROVE has proven itself to be an invaluable too1 for software 
verification. It has allowed for the controlled and detailed 
testing of complex software systems without having to resort to 
costly flight testing. There are however certain areas of 
improvement which can be made to the system. The most obvious 
improvement is the decreasing of the execution time of the sensor 
model. This it appears can be accomplished in a fairly straight 
forward manner by microcoding selected fundamental functions of 
the model. The types of functions which would be microcoded are 
matrix multiply and sine/cosine functions. This would not impact 
the ability to make future improvements to the system since only 
the most fundamental functions would be selected for microcode. 
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15 
INTERPLANETARY SPACECRAFT COMPUTER SOFTWARE TEST 

AND VALIDATION TOOLS* 

Daniel E. Erickson 
Jet Propulsion Laboratory 

Several characteristics of unmanned interplanetary space missions impose 
unique requirements upon the embedded computer systems which control the 
spacecraft and the tools used to validate the programming of these computers. 
The long mission duration creates a need for reprogramming after launch to 
accommodate evolving scientific requirements, a better understanding of the 
environment, or spacecraft anomalies. The stringent mass/volume/power 
limitations, coupled with a desire to maximize the information return man- 
dates efficient, assembly language coding and detailed simulations of com- 
puter execution through the entire mission. The simulation must be much 
faster than real time. This simulation has traditionally been performed in 
software on large mainframe. Throughput times and costs which are propor- 
tional to the efficiency of the simulation, the number of processors being 
simulated, and the activity of each processor have grown due to increased 
processor activity. Current Voyager simulation operation is costing $4500 
per week. 

A hardware accelerated simulation tool (HAST) has been developed for 
Voyager. It is in the final stages of acceptance testing and will be phased 
into operations following Jupiter Encounter. The major problems which were 
solved in the design were the provision of visibility into the execution of 
the flight software via memory traces and the achievement of the desired 100 
to 1 speedup ratio. 

For the Galileo project, no detailed simulator in software is planned. 
Simulation of the seven RCA 1802 microprocessors, running in the active state 
over 10 percent of the time would be prohibitively expensive. A hardware 
accelerated simulation tool is required for software development as well as 
software test and command sequence verification. This will require increased 
visibility into software execution, dictating a slowdown or suspend mode to 

7 give time for the printing of trace data. Furthermore, if significant speed- 
up is required (greater than 20 to l), functional simulation of the embedded 
software by hardware will be dictated. Some speedup and added visibility 
will be achieved by the emulation of the RCA 1802 with AM 2900 bit sliced 
logic. 

* This work is being conducted at the Jet Propulsion Laboratory of the 
California Institute of Technology by agreement with the National 
Aeronautics and Space Administration under Contract NAS 7-100. 
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16 
A SOFTWARE CHANGE DEVELOPMENT LABORATORY 

FOR SUPPORTING AN AGGREGATE OF EMBEDDED COMPUTER SYSTEMS 

F. H. Kishi 
TRW Defense and Space Systems Group 

D. R. Corder 
Oklahoma City Air Logistics Center 

A concept, designated Software Change Development Laboratory (SCDL), is 
defined for the purpose of performing operations and support for the aggregate 
of Embedd.ed Computer Systems (ECS) assigned to Oklahoma City Air Logistics 
Center. The major objectives of SCDL are to: 

0 Establish a capability for software change implementation and module/ 
CPCI verification testing. 

0 Provide a basic framework for a multi-system support tool which 
encourages standardization and consolidates resources. 

l Includewithin the framework a multi-purpose emulation tool which 
supportstraining and allows for exhaustive diagnostic probes. 

The software change process during the Operations and Support phase of the ECS 
life cycle is described, and the range of applicability indicated for the 
subject tools. A set of requirements is stated for the tools as they are used 
for the individual ECS's as well as across the aggregate of ECS's. A config- 
uration for the tool which satisfies the requirements is next selected which 
features a simulation processor complex with a set of common processors which 
functions as the simulation host processors for each of the Software Test 
Stands (Fig. 1). These Software Test Stands consist of the actual or emulated 
avionic processor loaded with the operational flight programs during testing. 

Within this configuration framework, weapon system software support needs 
are examined for the B-52 Weapon System (Fig. 2), Generalized Software Test 
Stand (Fig. 3), and the Short Range Attack Missile (Fig. 4). Based on this 
analysis a baseline philosophy is established for the simulation processor 
complex (Fig. 5), and a proposal is made for an initial configuration of the 
SCDL (Fig. 6) to be located at Oklahoma City Air Logistics Center for use in 
Operations and Support. 

A summary of the important points include: (a) analysis of a set of Weapon 
System ECS reveals where commonality requirements can be applied, (b) central- 
ized simulation processor complex maximi'zes standardization whiJe promoting mod- 
ularity, (c) diagnostic emulation adds multi-system flexibility and supports 
training prior to system transfer, and (d) opportunity exists for applying the 
integration concepts across systems before individual facilities are established. 
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TOOLS AND SOFTWARE REQUIREMENTS, DESIGN, AND SPECIFICATIONS 

Lt. Cal. Charles John Grewe, Jr. 
U.S. Air Force Electronic Systems Division 

THE PROCESS 

I am almost sure that everyone is familiar with the concept that you 
can divide the software development process into distinguishable phases. 
At least one way of looking at this division is to consider the phases 
as Design, Code, and Test. An estimate of the amount or percent of the 
total development effort is that the Design Phase requires about 4576, 
Coding requires about 26, and Test requires the remaining 35% of the 
effort associated with the software development process. Figure 1 depicts 
the areas in which errors in the development process occur. As you can 
see, most of the errors occur in the Design Phase or can be attributed 
to poor, incorrect, or incomplete design when they are finally discovered. 
Of course, as you would expect, errors also occur in the Coding Phase. 
Unfortunately, however, errors are generally not discovered until the Test 
Phase. The Design Phase in this context does not include the area of 
Requirements Development, which I consider s.n entire Phase unto itself. 
I will elaborate on this concept later, but first, a few more words on 
the error discovery process and the impact it has on the cost of cor- 
rection and effectively on the total cost of the software development 
project. 

THE COST OF ERROR CORRECTION 

Error correction is of itself an entire professional category. When 
you think of each and every profession in the environment today, a large 
portion of the cost and time associated with keeping devices, things, etc. 
going is associated with error correction. The military aircraft indus- 
try is a good example. How many times do we read about or hear about 
recalls necessary to correct an error in design, material, or workmanship. 
Millions of dollars are spent correcting errors discovered in systems 
(the airplane is also a system), and a large part, in fact a majority, 
of the cost is ass'ociated with correcting errors of design. Even worse, 
are errors associated with the market place (i.e., the needs or require- 
ments) for the system. The curve shown in Figure 2 represents the asso- 
ciated higher costs of discovering errors as a function of the passage 
of time. Once a product is in production and you discover a design error 
( or9 heaven forbid, find that no one wants the product), it is exponen- 
tially more expensive to correct or compensate for the mistake. This tool 
is true relative to the software development process. Mistakes are made 
in developing the requirements for a software system, in designing the 
software system, in coding the software system, and even in the testing 
(or lack of testing) the software system. So what should and can be done 
about it? 
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REQUIREMENTS DEVELOPMENT 

I have referred to Requirements Development as a Phase in the soft- 
ware development process. This is a generous phase that allows one to 
talk about all of the activities associated with trying to understand what 
the needs and requirements are for the system or subsystem being developed. 
It covers such considerations as what the needs are, who needs them, how 
do various people perceive the needs, why are they needed, how do you 
write down or otherwise document the requirements for the needs, how do 
you analyze the requirements descriptions to be sure the needs (real or 
as perceived) were adequately documented, and how do you provide for 
tracing the documented needs to the provider of it. I include, as shown 
in Figure 3, under this general Phase the more commonly accepted terms 
or processes as: 

-- Requirements Definition (Needs Determination) 
-- Requirements Specification 
-- Requirements Analysis 
-- Requirements Traceability 

The understanding of these terms is as varied as there are other 
ways of categorizing the different processes of Requirements Development. 
There is probably little hope in considering that a standard could be 
agreed on and adhered to in our industry of weapon system and software 
subsystem development and acquisition. Therefore, descriptions of these 
phrases are short in order to leave room for interpretation. 

Requirements Definition is the process of understanding what the needs 
of all interested parties are end documenting these needs as written de- 
finitions and descriptors. 

Requirements Specification is the more formal process of taking the 
descriptions of the needs and associating them with a formal structure 
(i.e., the format of MIL-STD-490 Type A System Level Specifications), 
such that they are presentable to someone else for implementing. 

Requirements Analysis is the process of applying various scenarios 
to the statements of system requirements to assist in determining if the 
specifications are complete, consistent, feasible, have alternative pos- 
sible solutions, and are understandable. 

Requirements Traceability is the process of documenting where the 
stated requirements come from and how they are associated with, or relate 
to, other requirements. 

Of the papers being presented here today, the first two by Melliar- 
Smith of SRI International and E. Rang of Honeywell, Inc. address aspects 
of software design snd.verification through the use of formal mathematical 
methods and the possible application of three other software development 
aids that make it "easy" to verify aspects of the system design. The 
next two papers by Paul Scheffer of Martin Marietta Aerospace and Judith 
&LOS of Hughes Aircraft Company address the broader scope of software 
development to incorporate aspects of requirements development, system 
design, and software development support. The fifth paper, by W. Riddle 
of the University of Colorado, presents the DREAM software design aid 
toolbox and identifies an approach that involves the identification of 
operational events, constraints on the occurrence of events, and provides 
for the development of a system structure to support the event/constraint 
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situation. The final paper, by J. Wileden of the University of Massa- 
chusetts, discusses a technique for use in describing dynamically struc- 
tured, concurrent software systems. 

These papers each address one or more aspects of Software Require- 
ments, Specification, and Design Tools and should provide you with further 
insight into the capabilities that exist today and possibilities for the 
future. 
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SOFTWARE ERROR SOURCES (CCIP-85 DATA: 220 ERROR TYPES) 

IRS FOUN D DURING OR 
R ACCEP 'TANCE TEST 

l LATE DISCOVERY OF AN ERROR HAS LARGE COST AND SCHEDULE 
IMPACT 

Figure 1 
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REQUIRZKENTS DEVEZLOPKENT 

. REQUIREMENTS DEFINITION 

. R3QUIRXE3NTS SPECIFICATION 

. REQUIREMENTS ANALYSIS 
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THE DEVELOPMENT OF PROGRAMS TO MEET 

EXCEPTIONAL RELIABILITY REQUIREMENTS* 

P. M. Melliar-Smith 
SRI International 

As modern aircraft flight control systems become more complex 
and critical to aircraft safety, so the certification of the systems 
becomes increasingly difficult. These flight control systems demand an 
exceptional level of reliability, beyond that required of any other 
computer application and well beyond what can be assured, or 
demonstrated, by conventional methods. Moreover the increasing 
complexity of the systems makes the attainment, and particularly the 
confirmation, of this reliability increasingly difficult. 

The traditional methods of program development and testing can 
produce programs whose reliability suffices for many purposes. The 
reliability required of such programs is low enough that it is possible 
to measure the failure rate during testing or service and to use these 
measurements to estimate the reliability of the program. However the 
reliability required of safety-critical flight control programs is such 
that even many years of testing or service in many aircraft will not 
suffice to provide the data confirming that level of reliability. Thus 
we can no longer depend on the the traditional approaches, which locate 
and remove faults individually until the required reliability is 
attained. Only approaches that can guarantee in advance that no faults 
remain will be able to convince us that the flight control system will 
meet the exceptional reliability reauirement. 

It is interesting to contrast the capabilities and limitations 
of the alternative methods of assuring the reliability of programs. 
Thus flight testing must necessarily be only a partial test, which 
cannot find all the possible faults but which makes very few assumptions 
about the system. In contrast, program proof is extremely thorough and 
ensures the absence of faults but only within the specific assumptions 
made about the system. A part of the value of flight testing is that it 
can be used to confirm those assumptions. Testing in an aircraft 
simulator, which can afford a much more extensive but still inadequate 
test sequence, makes fewer assumptions about the system. Designs based 
on software fault tolerance use a different set of assumptions, and have 
the advantage that they are effective against faults that are not 
detected until the system is in service. 

Recent advances in the application of formal mathematical 
methods to computer programs have influenced program design, testing, 
woof, and fault tolerance. In particular, the development of 
formal specifications for programs now provides a basis point for all 
of these activities. Further the semantic analysis of programs, 
developed for proof, is starting to influence the testing of programs 
and also the acceptance tests of the fault tolerance techniques. - 

-*This research is supported in part by contracts from,:the 
Flight Electronics Division, NASA Langley Research Center. 
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EXCEPTIONAL RELIABILITY REQUIREMENTS 

Safety Critical Computer Systems for Flight Control are allowed 
lo--10 failures per hour, for the hardware and programs together. 
Most of this allowance must be allocated to the hardware. 

Reliability of this order cannot be confirmed (but can be refuted) 
by testing, or even by extensive experience of use. 

Certification of Safety Critical Computer Systems will therefore 
require novel methods of increasing our confidence in the programs. 

Several novel methods are being developed, each with advantages 
and disadvantages. No one method can provide, at a reasonable cost, 
the degree of confidence necessary for certification. 

The greatest degree of confidence in the computer system, and the 
most economical approach to certification, will come from an 
appropriate combination of all of these methods. 

Figure 1 

ALTERNATIVE APPROACHES TO RELIABLE PROGRAMS 

FORMAL DESIGN METHODS - essential, both for fewer program faults and 
for feasibility of systematic verification. 

MANUAL INSPECTION - inexpensive but more effective than testing, 
good for design faults, less good for detail. 

TESTING IN SIMULATOR - fault coverage too low for high reliability, 
depends on accuracy of assumptions in model. 

FLIGHT TESTING - very expensive but essential for credibility, 
to confirm assumptions - not to find faults. 

PROGRAM PROOF - expensive but extremely thorough, 
depends on accuracy of assumptions in model, 

FAULT TOLERANT DESIGN - effective against faults remaining in system, 
complementary to other approaches. 

Figure 2 
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DESIGN METHODOLOGY AND FORMAL SPECIFICATION 

FORMAL SPECIFICATION - if we ,do not know what the system is to do, 
how are we to say whether it did it at all 
let alone reliably? 

the design, 1 
the testing, ) all should be driven 
the proof, ) by formal specification. 
the fault tolerance ) 

FORMAL DESIGN METHOD - to provide a structure that breaks a complex 
problem into several simpler problems, 

to provide levels of abstraction which allow 
us to think more easily about the problem, 

to allow us to talk about important aspects 
of a design without trivial obscuring details. 

Figure 3 

TESTING 

Used to get a 'working' program rather than a very reliable program. 

Simple test sequences can find many faults, but do not have fault 
coverage sufficient to find essentially all faults. The needed 
reliability can be obtained only by finding essentially all faults. 

Systematic methods have been developed for generating exhaustive 
test sequences that can find all faults in a program. These test 
sequences are very large and impossible to use in practice. 

To reduce the length of the test sequences, mathematical analysis of 
the program logic can be used. The analysis required to reduce the 
test sequence to a reasonable size is equivalent to program proving. 

The value of testing is not to find faults or to ensure the absence 
of faults, but rather to confirm the validity of assumptions made 
by the other methods of ensuring reliability. 

Figure 4 
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PROGRAM PROOF 

Now becoming feasible for specially designed programs, but still 
very expensive. 

Almost all experience is for programs that do logical manipulation. 
No experience yet for linear control systems (let alone nonlinear). 

The method depends on a very detailed formal model of the computer, 
the sensors, the actuators, the aircraft dynamics, etc. 
The proof is only as valid as this model and its assumptions. 

The method proves that the program satisfies a formal specification. 
The proof is only as valid as that formal specification. 

Within these assumptions, program proof totally precludes any faults. 

Timescale to completed demonstration for flight control: 3 - 5 years, 
to first certification based on program proof: 10 years. 

Figure 5 

FAULT TOLERANT DESIGN 

Error Detection and Error Recovery sections of programs are liable 
to be much less reliable than ordinary program. Special case methods 
are too complex to provide sufficient reliability. 

The favored approach is that of Recovery Blocks. 

Recovery Blocks require: Acceptance Tests, 
Alternative Program Blocks, 
State Restoration Mechanism. 

Acceptance Tests, derived from the Formal Specifications, present 
most of the difficulties, and cause most of the overhead and cost. 

Recovery Blocks cannot provide the certainty of proof, but they 
make fewer assumptions about the system. Thus they provide a useful 
complement to proof in increasing our confidence in the system. 

Figure 6 
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DESCRIBING A TRIPLY-REDUNDANT 

FLIGHT CONTROL SYSTEM 

FOR VERIFICATION OF DESIGN 

Edward R. Rang 
Honeywell, Inc. 

INTRODUCTION 

Remedies for many of the ills of software developments are known 
and are explained in text books cl,Z]*. At Honeywell, our design guide- 
lines are in the second edition L3,41. Yet we still have some problems 
in putting the remedies to practice. For flight control systems part 
of this is due to the nature of the system and part may be due to the 
manner in which we do business. I would like to talk about these things 
in the context of describing the first level of the software design 
for a triply-redundant system. Our primary tool for descriptions is 
HIP0 c53 . We have investigated the SRI International techniques [6,7,8] 
and a methodology based on Dijkstra's constructive approach [9] . I 
will make some subjective comments on these. 

FLIGHT CONTROL SOFTWARE 

The programs are of moderate size, less than 10 OOOlines of as- 
sembly code. The functions separate nicely and allow the program to 
be well structured with easily defined interfaces between modules. The 
control and data structures are elementary. There are only a few do- 
while loops for synchronization and shut-down. For these, the termina- 
tion is obvious. Hence, symbolic evaluation will yield a formal verifi- 
cation. 

Most of the functions can be constructed as finite-state automata. 
The outputs are computed in terms of the inputs and the current state 
values. Then the transition is made to the next set of state values. 
Holding to this makes the design of the mode logic functions, the signal 
select mechanisms and the failure management facilities very certain. 

- .  L.-.-.---__ .  .  .  ~_,_- -____ - -  -  _ . . . . .  ~. _I~ ._,.  .  

*Number in brackets indicates reference. 
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The basic simplicity of flight controls has permitted the engineer 
to provide acceptable software designs.without using structured program- 

,ming or other disciplines. The documentation of the software and the 
description of the design has often been far from adequate. 

HIP0 DESCRIPTIONS 

With proper diligence, a hierarch-plus-input-output presentation 
may be made complete and sufficiently rigorous to verify the flight 
control system design. Attention must be paid to supplying the moti- 
vations, a list of the functional capabilities which are required or 
other descriptions of the purpose of the module. The variables which 
carry state information should be specified. But there is nothing in 
the HIP0 charting to enforce this. One can write complete and accurate 
HIP0 charts that are as stark as assembly code. 

The processes for synchronization in a triply-redundant system 
at;oyt c;mplhicated. Formal descriptions are possible using Petri nets 

e ave also studied synchronizations with simulations. 

SRI INTERNATIONAL METHODOLOGY 

This approach adds a formal discipline at the specification level. 
It provides checks for syntax, checks for the consistency of references 
between modules, and checks for circular references between modules. It 
provides a discipline to ensure that the state variables are specified 
and initialized. The tools are well designed and easy to use. However, 
there is vastly more generality and capability in their methodology 
than is required for our modest flight control system. The separation 
of functional capability, descri bed by the non-procedural language 
SPECIAL, and the sequencing of functions in time, described by their 
program language, is a level of sophistication that obscures our simple 
programs. It is just as difficult to add motivational comments and gen- 
eral descriptive material to SPECIAL listings as it is to add that 
material to assembly code. It is more natural on the HIP0 charts. 
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A CONSTRUCTIVE METHODOLOGY 

The approach based on Dijkstra's work r9] aims at supplying veri- 
fication along with the design. Attention is focused on loop invariants 
for computations of very clever algorithms. This does not help our 
problem much. The general design and documentation tools are useful 
in the large-scale software development cycles, but flight controls can 
manage with much less. 

CONCLUDING REMARKS 

My contention is that the design of a triply-redundant flight control 
system may be described using HIP0 charts in sufficient detail and with 
sufficient rigor to verify by oral demonstration that the system per- 
forms all of its intended functions and does not perform any unintended 
functions. This is facilitated by constructing the functions as finite- 
state automata. The formal methodology constructed by SRI Internation 
is helpful but not absolutely necessary since the flight control soft- 
ware is not a particularly difficult problem. 
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20 
SOFTWARE DESIGNERS.WORXBENCH 

Requirements and Design Tools for Expression and Evaluation 

Paul A. Scheffer 

Martin Marietta Aerospace 

One of the more innovative of recent software engineering activities is 
the concept of a Programmer's Workbench (PWB). The PWB is a very different 
approach to improving the software development process. It is based on a 
program development "facility" much like those that have been developed for 
other professions (e.g., carpenter's workbench, engineer's laboratory). This 
approach helps focus attention on the need for adequate tools and procedures; 
it serves as a mechanism for integrating tools into a coordinated set; and it 
tends to add stability to the programming environment by separating the tools 
from the product. The PWB idea separates the Workbench, which performs the 
development and maintenance function, and the,host or target computer on which 
the production system will run. The link between the two machines represents 
a physical connection which is used to transfer data, run tests, etc. 

A simple generalization of the PWB concept results in the idea of a total 
software engineering facility, i.e., a Designer's Workbench (DWB). In the DWB 
concept, the library of PWB support tools to build and manipulate program 
source code is expanded to handle the complete set of functions needed for all 
software design and development activities. Such functions include require- 
ments and design component identification, specification, documentation, 
management control support, design evaluation mechanisms, and so on. 

At Martin Marietta/Denver, we are actively pursuing the development of 
this concept. In addition to installing a software development laboratory as 
a dedicated facility, we have several plans for expanding the tools repertoire 
available. Using a PDP 11/70 architecture base, and system.software which 
includes RSX-11M and the UNIX operating systems, standard PWB tools, and 
INGRES data base capabilities, we are augmenting the system with several high 
level DWB tools. These design tools basically take two forms. One is a set 
of languages for expressing design: the set consists of a language for each 
design level (currently expected to be 3) starting with requirements defini- 
tion. The second form of design tool is closely associated with the languages 
and satisfies a design evaluation function. Evaluators provide feedback infor- 
mation to the designer on what has been expressed in the language. The 
evaluation can be an assessment of what has been syntactically stated in the 
language (consistency reports, summaries, etc.), a semantic assessment that is 
static in nature (design structure), or a dynamic (simulative) assessment. 

This presentation considers only those parts of this overall software 
engineering facility plan which have been implemented and are being used. On 
the language side, this includes a high level requirements language called 
MEDL-R and an initial design phase language called MEDL-D. These two 
languages have been carefully defined to allow a smooth transition from one to 
the next. Primarily this is to support the traceability and management of 
individual system requirements. Design evaluation tools are discussed in terms 
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of analytics for both requirements and design component structure, and in terms 
of quantification of design quality. The analytic tools for evaluation provide 
information on design in a manner similar to that provided by source code 
analyzers. Design quality measures will provide feedback on the degree to 
which a design satisfies various characteristics of quality such as maintain- 
ability, modularity, or testability. 

SOFTWARE DESIGNERS WORKBENCH 

General: o Support Any Phase of S/W Development 

0 "Comfortable" User Interface 

o Extensible, Total System Development 

Specific: Requirements Preliminary Design 

Definition Structure 

Management Data Definition 

Analysis Interfaces 

Future: Detailed Design Simulation 

Architecture H/W - S/W Symbiosis 

Processes Resources 

Behavior 

Figure 1 
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MULTI-LEVEL EXPRESSION DESIGN LANGUAGE SYSTEM 

o Fills Void of Requirements Language (MEDL-R) 

o Specific Language for Each Design Phase, Leading to End-to-End 

Support System 

o Assessment Methods to Evaluate a Design at Any Level 

o Measurement Techniques Attempt to Quantify Characteristics of 

Quality 

Figure 2 

STATUS 

o MEDL-R: Implemented, Undergoing V & V Using NASA "Live" 

Requirements Test-Bed 

o MEDL-D: Still in Design Activity 

o CSEF: Operational, Anticipated Hardware Expansion 

o Design Languages: Surveys and Evaluations On-Going, SSL Model 

for MEDL-D 

o RISS/MASS: Implemented Relational DBMS for CSEF 

Figure 3 
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MEDL ASSESSMENT 

o Requirements Level Unique in Supporting True Requirements Data Base 

0 Information "Explosion" a Potential Problem 

0 Reduces Manageability Problems, especially for Volatile Requirements 

0 Serves Throughout Life-Cycle of S/W Development 

o Crossover, MEDL-R to MEDL-D to MEDL-P, Satisfies Traceability Needs 

0 Inexpensive Tool (11/70); Requires DBMS Currently Built in FORTRAN 

Figure 4 

CONCLUSIONS 

o DWB Concept - Properly Focuses Emphasis on Tools 

o Cost-Effectiveness - Benefits with just a Few Tools (PWB) Seem to 

Justify Further R & D and Library Expansion 

0 S/W Design Model - All-Inclusive Model (Concept Formation to 

Maintenance) is Lacking 

o Design Evaluation Mechanisms - Need Further Research for Calibration, 

especially Quality Aspects 

Figure 5 
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21 
TOOLS FOR EMBEDDED SOFTWARE DESIGN VERIFICATION 

J. C. Enos and R. R. Willis 
Hughes Aircraft Company 

SUMMARY 

One of the many ways in which Hughes is attacking the software life cycle 
cost problem is by engineering tools which verify that designs meet intended 
requirements. These tools support the user by providing automatic feedback 
for assessing the consistency, completeness, performance, and quality (cost) 
of software designs. The tools and their application to known problems are 
summarized in Table 1. 

TOOL CAPABILITIES 

Structured Design (ala Constantine/Meyers) is Hughes' methodology for devel- 
oping the structure of software components. To support designers, we have 
developed the Structure Chart Graphics System (SCG) and the Design Quality 
Metrics System (DQM). SCG automates the development and formal documentation 
of structure charts using graphics terminals, plotter outputs, and a computer 
data base of the structure. DQM uses the data base to automatically quantify 
the extent to which structured design guidelines have been adhered to. I.e., 
DQM enables the designer to evaluate the cost or goodness of the design. 

Hughes makes extensive use of representative simulation models to verify 
that designs meet required performance criteria. To support the analysts we 
have developed the General Function Model (GFM) and the Distributed Data Pro- 
cessing Model (DDPM). The GFM provides a general simulation model for evalua- 
ting operational feasibility. The DDPM provides a vehicle for quantifying de- 
sign tradeoffs for architecture, allocation, hardware selection, and software 
design. 

These tools have been integrated or are scheduled for integration into an 
automated support facility, the Design Analysis System (DAS). The DAS current- 
ly provides a user-engineered graphics interface, automatic model generation 
and interactive graphics support to the General Function Model for operational 
feasibility analysis (DAS/OFD). PSL/PSA (University of Michigan ISDOS project) 
supplements the system with automatic documentation, common data base mainten- 
ance, and consistency and completeness checking. 

FUTURE PLANS 

The DAS is an evolving system. All tools as described are currently avail- 
able either as an integrated part of the system or as stand-alone tools. To 
address the technology transfer problem for Structured Design we are engineer- 
ing a semantic preprocessor for the SCG System which will enforce, on a company 
wide basis, the standards established through use of the methodology on a 
number of projects. To address the requirements communication problem, we are 
engineering a requirements analysis'system which will include: 1) a graphic 
system for construction; maintenance, and documentation of information flow 
diagrams, 2) simulation modelling aids such as QGERTS and GMB (UCLA SARA pro- 
ject), and 3) schema for mapping these data into PSL for automated traceability. 
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TABLE l.- SOFTWARE DESIGN ANALYSIS TOOLS 

DELIVERED SYSTEMS DON’T MEET 
INTENDED REDWREMENTS 

3. REa”lREMENTS ANALYSIS FOR 
CONSISTENCY AND COMPLETE- 
NESS 

THE DESIGN ANALYSIS SYSTEM 
AN INTEGRATED APPROACH TO TOOL DEVELOPMENT 

SOFTWARE 
DESIGNER 

DESIGN ANALYSIS SYSTEM 

REOUIREMENTS 
SFEClFlCATlONS 

Figure 1 
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COMPUTER SYSTEM 
ALTERNATIVES 

DAWOFD 
AN AID TO EVALUATION OF USER REQUIREMENTS FOR 

OPERATIONAL CONCEPT FEASIBILITY 

THE DDPM 
A TABLE-DRIVEN MODEL FOR SIMULATION OF 
COMPUTER SYSTEM DESIGN ALTERNATJVES 

COMPUTER SYSTEM 
SPECIFICATION 

COMPUTER SYSTEM 
SPECIFICATION 

WHICH PLAN BEST 

4MDAH L 470 

Figure 3 



STRUCTURED DESIGN GRAPHICS SYSTEM 
AN AID TO STRUCTURED DESIGN PROVIDING AUTO- 

DOCUMENTATION AND METHODOLOGY STANDARDIZATION 

SOFTWARE 
DESIGNER 

HARD COPY (6’ SIZED) 

WRT LINKAGES/ 

WALL SIZE 

(QUALITY METRICS) 

(UP TO 20 FT BY 20 FT) 

20 ft = 6.1 m 

Figure 4 

DESIGN QUALITY METRICS SYSTEM 
A QUANTITATIVE MEASURE FOR DESIGN “GOODNESS” 

LEVEL 0 

LEVEL 1 

LEVEL 2 

LEVEL 3 

LEVEL 4 

STRUCTURE 

COMPLEXITY (MCCABE, SCHNEDmWIND) 
Ci = Ai - Ti 

TREE IMPURITY (LEVEL 0 TO i) 
Ri = Ci/Ai 

TREE IMPURITY (LEVEL i-l TO i) 
Di = 1 - ATi/AAi 

o 2 4 6 6 10 12 14 16 

WHERE: 
Ai = NO. OF ARCS FROM 

LEVEL 0 TO i --_--- .-. 
Ti = NO. OF NODES FROM 

LEVEL 0 TO i (-1) 

LEVEL 

Figure 5 
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22 
AN EVENT-BASED DESIGN METHOD 
FOR EMBEDDED SOFTWARE SYSTEMS 

William E. Riddle 
University of Colorado at Boulder 

The Design Realization, Evaluation And Modelling (DREAM) system has been 
developed to provide aid to the designers of complex software systems. Its 
major component is a language, called the DREAM Design Notation (DDN), which 
permits the rigorous description of a software system as it evolves during 
design. The language also permits the rigorous description of the environment 
in which the software system operates. The DREAM system supports a variety of 
design methods through tools which provide bookkeeping and decision-making aid 
to designers. A trial, partial implementation of the system has been completed 
and the design language has been used to describe a wide range of existing 
software systems. The language has also been used in several design experi- 
ments conducted to assess the effectiveness of the system during design, but 
more rigorous assessment of the system and language is needed. 

In the course of the design experiments, however, a new variation of the 
traditional top-down, elaborative design method has been identified. In this 
event-based design method, the first step is to identify interesting events 
which occur during the operation of the system. Then constraints upon the 
occurrences of these events are rigorously defined. Then system components are 
demarcated and interactions among the components are defined which lead to the 
satisfaction of the constraints. These activities constitute a design step and 
produce a more complete, but still incomplete, design which is further elabor- 
ated by the next design step. 

The event-based design method, as currently defined within the context of 
the DREAM system, is oriented toward the development of the processing strate- 
gies of software systems having components which operate concurrently. It 
introduces a desirable rigor into software system design and forces designers 
to consider global aspects of the system before developing the system's detail. 
The method also provides many opportunities for analysis, allowing designers to 
incrementally assess the appropriateness of their design decisions. 
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THE DREAM SYSTEM 

PURPOSE: provide aid to designers of complex 
software systems 

FACILITIES: 
. DESIGN LANGUAGE for blueprinting the software 

and the environment in which it is embedded 
. DESIGN METHODS for the gradual evolution of a 

svstem's architectural design 
in the bookkeeping . DESIiN TOOLS to aid designers 

and decision-making tasks 

STATUS: 
. design language has been camp 
. partial, trial implementation 
. several existing systems have 

. operating systems 

. artificial intelligence 

. control systems 

. hardware systems 

letely developed 
is complete 
been described: 

systems 

. interactive computing systems 
. a few design experiments have been conducted 
. analysis techniques for the support of decision- 

making have been formulated 

FUTURE: 
. need to increase domain of systems which can be 

attacked: 
. dynamically structured systems 
. interrupt-driven systems 

. need to expand the set of decision-making tools 

. need a full, proof-of-concept implementation 

. need to test existing design methods 

. need to develop new design methods 

Figure 1 

EVENT-BASED DESIGN METHOD 

(SPECIFICATION) 

delimit interesting happenings 

.S 

on 
nl / - \ 
-L----( INTERACTIONS \ 

\- 

COMMENTS: 
. back-up may be necessary 
. language allows decisions at each step to be 

recorded 
. bookkeeping aid supports the preparation and 

modification of evolving description 
. decision-making aid allows the completeness 

and consistency of the description to be 
checked at each step 

Figure 2 
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CONSTRAINT DESCRIPTION 

EVENT DEFIbIITION 

INTENT: delimit interesting happenings 

EXAMPLE: EVENT DEFINITION; 
heat-up: DESCRIPTION; temp 2 150.F END; 
handle-hot-engine: 

SEQUENCE (heat-up, notice, ring); 
END; 

CONCEPTS USED: 

l definition of primitive events 

l definition of non-primitive events as sequences 
of other events: 

concatenation, repetition, alternation, 
concurrency, re-entrancy, synchronization 

COMMENTS: 

l a system is a collection of parallel parts 

l the system is both the software portions and the 
other parts with which the software interacts 

l start with an external vie!!.! 

INTENT: capture requirements 

EXAMPLE: DESIRED BEHAVIOR; 
POSSIBLY 4 CONCURRENT 

(SEQUENCE (heat up, notice, ring)); 
END; 

CONCEPTS USED: 

l requirements can be described in terms of 
desirable (or undesirable) event sequences 

COMMENTS: 

. description is non-prescriptive, admitting 
many ways to achieve the desired behavior 

. description is non-procedural, specifying 
what (effect) rather than how (cause) 

. the requirements that are captured may come 
either from the original specification or 
from considering incomplete parts of the 
design 

Figure 4 Figure 3 



COMPONENT DELINEATION 

INTENT: define agents 

EXAMPLE: SUBCOMPONENTS; 
engines ARRAY [1..4] OF [engine]; 
monitor OF [engine monitor]; 
alarm OF [audio-device]; 
END; 

CONCEPTS USED: 

l systems decomposed hierarchically 

l parts viewed as operating concurrently 

COMMENTS: 

l parts may be only hypothetical ones 

l parts may be software or "hardware" 

Figure 5 

SUMMARY COMMENTS 

Useful in defining the processing strategies 
employed in the system. 

Useful for systems that decompose into parallel 
parts. 

The method forces consideration of global aspects 
before consideration of detail. 

The method leads to a desirable rigor in 
recording decisions at each step. 

Useful analysis can be performed upon the 
evolving description; allows designers .to 
incrementally assess the appropriateness of 
the design. 

Figure 6 

INTENT: 

EXAMPLE . 

INTERACTION DEFINITION 

develop cooperation needed among 
components in order that constraints 
are observed 

[engine monitor]: SUBSYSTEM CLASS; 
receive status: IN PORT; END; 
sound aTarm: OUT PORT; END; 
observe: CONTROL PROCESS; MODEL; 

ITERATE RECEIVE receive status; 
MAYBE SEND sauna alarm; 

END; - 
END; 

END; END; 
END; 

CDNCEPTS USED: 

l interactions defined by message transfer 

. pseudo-procedural definition of message 
handling 

COMMENTS: 

. redundant description allows consistency 
checking 

* message transfer may or may not be the real 
mode of interaction 

Figure 7 
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A TECHNIQUE TO AID IN THE DESIGN AND ANALYSIS 

OF DYNAMICALLY STRUCTURED, CONCURRENT SOFTWARE SYSTEMS 

Jack C. Wileden 
University of Massachusetts 

Many contemporary complex software systems are most naturally 
described as collections of interacting parallel processes in which 
processes are created and destroyed or patterns of potential process 
interaction are altered during system execution. A description of 
this kind may be merely an accurate reflection of dynamic restructuring 
capabilities designed into the software system, as in the case of the 
RC4000 [l]* and HYDRA [2] operating systems or the HEARSAY '[3] speech 
understanding system. Alternatively, this descriptive approach may 
be useful in explicitly representing potential modifications to a system's 
configuration which tight result from the failure of processing elements 
or communications channels due to faults in either hardware or software. 
Thus, since the design of a complex software system should ideally be 
represented in the moat natural possible manner, it seems evident that 
software system design tools should incorporate constructs for describing 
dynamically-structured parallel systems. As currently specified, however, 
design tools such as DREAM [4], SARA 551 and SREM [6] all base their 
system descriptions on a fixed set of processes and a fixed pattern of 
process intercommunication, with no provision for the natural re;>resen- 
tation of dynamic structure in a software system's design. 

In this presentation, we discuss a technique developed for use in 
describing dynamically structured , concurrent software systems [7]. This 
technique is based upon a description language, called DYMCL, and an under- 
lying formal model which provides a well-defined semantics for DYMOL'S 
constructs. Our technique, slated for future inclusion in the DREAM design 
aid system, is currently being employed as a rudimentary, stand-alone 
design tool and used in an investigation of cooperative distributed pro- 
cessing systems 181. Our current assessment of the technique's potential 
utility as an aid to software system designers is largely based upon examples 
such as those described in the presentation. The examples considered to 
date suggest that, by providing capabilities for analyzing an evolving 
design, the technique can be of significant value to designers of dynamically 
structured, concurrent software. A more complete assessment of the technique's 
value must, however, await the development of automated versions which 
can serve as a basis for continued investigation and experimentation. 

*Number in brackets refers to reference. 
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PARALLEL SYSTEM WITH DYNAMIC STRUCTURE 

(PSDS) 

l Simultaneous Activity By Multiple Components 

l Coordinated Via Intercomponent Interaction 

l Components May Be Created Or Destroyed 

l Intercomponent Interaction Patterns May Change 

Figure 1 

DYNAMIC PROCESS MODELLING SCHEME 

(DPMS) 

Components = Processes 

- Described By DYMOL Process Templates 
- Ports 
- Buffers 

Interaction = Message Transmission 

- Finite Set Of Distinct Message Types 
- Process Ports Connected By Channels 
- Message Transmission Mediated By Links 

Dynamic Structure + Instantaneous Configurations 

- Configuration Matrix 
- Process States 
- Link States 

DPMS Model = Set Of Process Templates + Initial 
Instantaneous Configuration 

Computation = Sequence Of Instantaneous 
Configurations 

- Possibilities Determined By DYMOL Semantics 

Figure 2 



PARALLEL SYSTEMS WITH DYNAMIC CONNECTIVITY 

(DC SYSTEMS) 

l Fixed Set Of Components 

l A Behavior Representation Technique 

. Finite Expression Representing Possibly Infinite 
Set Of Behaviors 

l Varying Component Interaction Patterns 
. Descendant Of 

l Examples: 

- Computer Networks 
- Intertask Message Routing 

Figure 3 

DPMS MODELS OF DC SYSTEMS 

l Fixed Set of Processes 

l Varying Channel Connectivity 

' DC DYMOL 

- No CREATE Or DESTROY 

l Fixed-Size, Square, Configuration Matrices 

Figure 4 

CONSTRAINED EXPRESSIONS 

- Event Expressions (Riddle) 
- Counter Expressions (Welter) 

l Event Alphabet E 

. Constraint Alphabet S=S~S$..,VSn 

- EfG=@ 

l Event Expression Operators 

- Regular Expression Operators Plus a And+ 

l Constrained Expression Is: 

- A Regular Expression (Including 0) Over EUS 
- Interpreted With Respect To Constraint Set CS 

. Interpreted Language L For Expression R Is: I 

L=H(RnC&%..fiCn) 
where 

cs={cl,c*,...,cn] 

H:EUS+ E H(e)=e H(s)=X 

Figure 5 



USING HDM FOR EMBEDDED SYSTEMS* 
24 

L. Robinson and K. N. Levitt 
SRI International 

A generally accepted set of concepts--abstraction, hierarchical structure, 
and modularity--has emerged from recent software research. If followed, these 
concepts can lead to software with improved reliability, improved maintain- 
ability, and lower costs. These concepts have provided the basis for several in- 
formal software-development methodologies. The informal software methodologies 
have not produced improvements because they provide only guidelines. They 
neither provide a metric for evaluating a system's adherence to guidelines nor 
allow a mathematical proof that a system meet its requirements. 

In contrast, HDM (Hierarchical Development Methodology), a formal methodolo- 
gy developed at SRI International, overcomes the shortcomings of the informal 
methodologies, because it is based on a formal model of computation and because 
it requires formal written specifications that describe software development 
decisions. 

Derived from the concepts, the formal model of computation provides mecha- 
nisms with enforceable rules. These rules restrict the structure of a system 
and the process of its development. 

HDM divides the software development process into stages--structuring, de- 
sign, representation, and implementation--each of which produces formal specifi- 
cations. Languages are provided for specifying the decisions at each stage; 
on-line tools check these specifications for violations of the rules. The con- 
sistency of these specifications can be shown through formal verification. For 
example, we can verify that a system's implementation meets its requirements. 
Thus HDM introduces tools and formal verification into all stages of system 
development--a first attempt to incorporate formality and checking into the 
design stages. 

The status of HDM is twofold. It is continuing to evolve as more issues are 
covered and more is learned about the software development process. At the same 
time it has shown its value as it currently exists in developing certain classes 
of large systems. 

SRI is developing tools to assist in the development and verification of 
software systems, particularly those concerned with embedded systems. SRI will 
apply the tools in verifying the hardware-fault-tolerance properties of SIFT 
(Software-Implemented Fault Tolerance), an embedded system for aircraft control 
in which most mechanisms for establishing tolerance to hardware faults are part 
of the operating system software. 

*The work on the development aspects of HDM is being supported by the Naval 
Ocean Systems Center under Contract N00123-76-C-0195. The verification system 
work and its application to SIFT is being sponsored by NASA-Langley Research 
Center under Contract NAS l-15528. 
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HM (HIERARCHICAL DEVELOPUENT H~THODOLOGY) 

CONCEPTS ON WHICH HIM IS BASED 

. Hierarchical Structure 

. Abstraction 

. Modularity 

. Formal Specification 

. Data Representation 

. Program Verification 

MFCHANISHS THAT UNIFY THE CONCEPTS 

. Abstract Machines: operations, internal data structures 

. Modules 

. Stages of development 

. System families 

LANGUAGES OF HDM 

. HSL (Hierarchy Specification Language)--structure of machines 
and modules 

. SPECIAL (SPECIficatlon and Assertion Language)-- 
specification and data representation 

. ILPL (Intermediate Level Programming Language)-- 
operation implementation 

TOOLS OF HDM 

. Syntactic Checking 
l Self-consistency 
l Mutual Consistency 

. Formal Verification 
l Design 
w Implementation 

Figure 1 

IMPACT OF HDM 

ON RELIABILITY 

l Production of "simplern systems 
l Feasibility of verification 
l Elimination of many errors by use of languages 

and tools 
l Feasibility of producing complete specifications 
l Structuring of program testing 

ON DEVELOPMENT PROCESS 

l Structuring of decisions according to stages 
l "Dialogues" using formal specifications 
l Use of woff-the-shelfn modules 
l Generality from system family approach 
l Usefulness of tools In all stages 

ON LIFE CYCLE MAINTENANCE 

4 Precise, readable documentation from specification 
l Facilitation of modification 

Figure 2 
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TOOLS OF HDM 

MODULE SPECIFICATIONS 
(SPECIAL) 

1 

MODULE 
CHECKER 

REPRESENTATIONS 
(SPECIAL) 

REPRESENTATION 
CHECKER 

IMPLEMENTATIONS 
(ILPLI 

1 

IMPLEMENTATION 
CHECKER 

INTERFACE DESCRIPTIONS 
(HSLI 

t 

INTERFACE AND 
HIERARCHY CHECKERS 

USER GUIDANCE 
1 v 

VERIFICATION 
SYSTEM 

L9 

LB 

L7 

L6 

L5 

L4 

L3 

L2 

Ll 

LO CAPABILITIES 

Figure 3 

HIERARCHY FOR PSOS (Provably Secure Operating System) 
(Only a subset is shown) 

IISER VISIBLE 
PROCESSES I/O 

SEGMENTS 

PAGES 

SYSTEM 
PROCESSES 

SYSTEM 
I/O 

MEMORY PRIMITIVE 
I/O 

INTERRUPTS 

USER 
OBJECTS 

DIRECTORIES 

EXTENDED 
TYPES 

ARITHMETIC 

Figure 4 
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ADJACENT ABSTRACT MACHINES IN A HIERARCHY 

. 

. INVOCATION OF OPERATIONS 

. CHANGES VALUE OF DATA 

. ACCORDING TO SPECIFICATION 

ABSTRACT 
MACHINE i 

THIS PROGRAM 

IMPLEMENTS OPf 

IN TERMS OF 
OPERATIONS 1-1 

DATA i-l 
REPRESENTS 
DATA i 

OPERATIONS 1-1 

STAGE 

Co”ceptualizatio” 

External 
Interface 
Definition 

Intermediate 
Interface 
Definition 

Formal 
Specification 

Formal 
Representation 

Abstract 
Implementation 

Coding 

Verification 

Figure 5 

STAGES OF HDH 

ACTIVITY 

Formulating system 
goals 

Defining external and 
module structure of 
extreme machines 

Defining external and 
module structure of 
intermediate machines 

Specifying modules 

Describing data 
structures 

Writing implementation 
specifications 

Producing executable 
programs 

Proving properties of 
formal descriptions 

LANGUAGE 

None yet 

HSL 

SPECIAL 

ILPL 

A programming 
language 

Language of 
verification 
system 

ABSTRACT 
MACHINE i-l 

TOOL(S) 

None yet 

Interface 
checker 

Interface and 
Hierarchy 
checkers 

Module 
checker 

Representation 
checker 

Implementation 
checker 

Compilers, 
Optimizers, 
Assemblers, etc. 

Verification 
system 

Figure 6 
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AN INTEGRATED VERIFICATION AND'VALIDATION TOOL FOR FLIGHT SOFTWARE 

Richard N. Taylor, Leon J. Osterweil*, and Leon G. Stucki 

Boeing Computer Services Company 

NASA Langley Research Center is developing the MUST (Multipurpose User- 
oriented Software Technology) program to cut the cost of producing research 
flight software through a system of software support tools. .Boeing Computer 
Services Company (BCS) has designed an integrated verification and validation 
capability as part of MUST. Documentation, verification and testing options 
are provided with special attention on real-time, multiprocessing issues. The 
needs of the entire software production cycle have been considered, with 
effective management and reduced lifecycle costs as foremost goals. 

Previous verification and validation systems generally have utilized a single 
technique, such as static or dynamic analysis. However, thorough examination 
of any one program requires the use of several techniques. 
a comprehensive set of analytical techniques, 

Besides providing 
the integrated capability BCS 

has designed takes advantage of the complementary abilities of the different 
schemes in a synergistic manner. 
emerged though. 

A wone-tool-does-it-all" concept has not 
The need for a distributed set of tools became clear as the 

various usage modes present in the MUST environment were modeled. No single 
sequence of testing and analysis activities is optimally suited to all MUST 
requirements. Rather, for detecting specific classes of errors under specific 
operating constraints, a specific combination of analysis techniques is chosen. 

The concern with multiprocessing issues is motivated by the increasing soph- 
istication of flight hardware and software, which present difficulties such as 
protecting shared data. New research was conducted into the problem of 
statically detecting such errors with encouraging results. Consequently, 
capabilities have been included in the design for static detection of data flow 
anomalies involving communicating concurrent processes. Some types of ill- 
formed process synchronization and deadlock also are detected statically. 

Although the HAL/S language is the primary subject of this design, the algo- 
rithms developed are readily applicable to other languages. Prototype capa- 
bilities for HAL/S have been developed in conjunction with the design. Full 
implementation of these capabilities will provide the MUST user with extremely 
powerful program development tools. Such programming environments offer a very 
desirable and profitable alternative to the way software is typically produced. 

*Boeing Computer Services Company and the University of Colorado 
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END USER PEW1 REMENTI 
4 ANALYSIS - 

PRELIMINARY, DETAIL 
DESIGN - DESIGN 

5 CODE 

. 

Figure 1 

CONSISTENCY CONSISTENCY CONSISTENCY CONSISTENCY 

n n 
END USER 

\ + \ 

?EQUIREMENTI 
ANALYSIS 

PR;l&Ml;ARY DETAIL 
DESIGN CODE 

REQUIREMENTS PRELIMINARY INCREMENTALLY CODE 
VERIFICATION DESIGN DETAILEDDESIGN 

VERIFICATION VERIFICATION VERIFICATION 

A-- 

Figure 2 

d 

?EQU I REMENTS - 
ANALYSIS _ 

fI.J 
1 SYSTEM 1 
I DATA , 
1 BASE 

-L-M 
; 

\ 

- ANIJ 

SYSTEM TEST 

Figure 3 

SOURCE = STATIC SYMBOLIC 
TEXT ANALYSIS h EXECUTION 

DYNAMIC 
* TESTING 

. 

Figure 4 
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SOURCE CODE 

EXECUTION OPTIONS 

MODULE VERIFKATION OPTIONS 
Figure 5 

CONCLUSIONS 
1) PROGRAMMING ENVIRONMENTS A SIGNIFICANT AID IN THE PRODUCTION OF 

SOFTWARE 

2) A COMPREHENSIVE SET OF INTEGRATED VERIFICATION AND VALIDATION TOOLS 
ALLOW A MAXIMUM AMOUNT OF TESTING TO BE PERFORMED IN THE PROGRAMMING 
ENVIRONMENT 

3) SOFTWARE LIFECYCLE ISSUES MAY BE EFFECTIVELY ADDRESSED 

RECOMMENDATIONS 
1) IMPLEMENTATION AND UTILIZATION OF PROGRAMMING ENVIRONMENTS 

2) MORE RESEARCH INTO THE DEVELOPMENT OF INTEGRATED REQUIREMENTS AND 
DESIGN TOOLS, ALLOW VERIFICATION BETWEEN VARIOUS LEVELS OF 
SPECIFICATIONS 

3) FURTHER RESEARCH INTO VERIFICATION OF REAL TIME, CONCURRENT PROCESS 
SOFTWARE 

Figure 6 
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USE OF SYMBOLIC EXECUTION IN VERIFICATION AND VALIDATION 26 

Marilyn S. Fujii and Michael A. Ikezawa 
Log-icon, Inc. 

INTRODUCTION 

AMPIC is a symbolic execution tool used in verification and validation of 
assembly and higher order language programs. AMPIC has three major processing 
phases: structure analysis, expression translation, and path analysis. Each 
of these phases is invoked sequentially to perform a portion of the structural 
calculus required for symbolic execution. 

STRUCTURE ANALYSIS 

The first phase, structure analysis, decomposes the program into two basic 
types of structural elements referred to as sequences and transfers. A sequence 
is an ordered group of executable statements or instructions that must be 
followed consecutively from top to bottom. A transfer is any program statement 
or instruction that causes the selection of the next statement or instruction 
from two alternatives. In the sample program shown in figure 1, the sequence 
and transfer segments are indicated by consecutively numbered S and T symbols. 

The structure analysis phase next produces an equivalent, well-structured 
representation of the program which is displayed in either of two types of flow- 
charts. The abbreviated flowchart, shown in figure 2, concisely summarizes the 
program's structure in terms of its S and T segments. The full text flowcharts 
are similar, but replace S and T symbols with actual source code. 

The structured flowcharts are used in verification and validation to reveal 
distinct program paths, a significant advantage over conventional flowcharts. 
Comparing structured flowcharts to design specifications detects errors in imple- 
mented <program logic. Additionally, segments occurring in more than one path can 
be identified as candidates for optimization. 

EXPRESSION TRANSLATION 

The second phase, expression translation, transforms the program's source 
code into a mathematical notation. Particularly for assembly language programs, 
expression translation minimizes the amount of painstaking and error-prone manual 
analysis. The translations for higher order language programs resemble the 
original code, with some algebraic simplification. As shown in the translation 
of the sample program (fig. 3), the symbol NU indicates the final value of a 
variable within each segment. 

Expression translation is most us,eful in the verification and validation of 
assembly language programs, for which it is necessary to translate source code 
into a less machine-oriented form. Figure 4 shows the assembly language equiva- 
lent of sequence S2 from the sample program and its translation. In comparison 
to the source code, the translation is quickly comprehended and can easily be 
checked against equations in the design specification. 
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PATH ANALYSIS 

The third phase, path analysis, identifies each program path as a series of 
S and T segments. The conditions that are logically necessary to execute each 
path are derived, as are the results of executing each path. Figure 5 shows the 
symbolic execution results for two of the sample program's paths. For convenience 
in describing paths, the transfer outcome is indicated by replacing the T trans- 
fer symbol with a P (no transfer) or an R (transfer). 

AMPIC's path analysis is used in verification and validation to derive the 
initial and resulting conditions for program paths. It reveals unreachable code 
by identifying contradictory initial conditions. For programs suitable for 
case-by-case analysis, path conditions and results are often readily comparable 
to design specifications. Path analysis results can also be used to systemati- 
cally generate test cases that provide complete coverage. 

SUMMARY 

AMPIC has been successfully applied on several verification and validation 
projects including tracking, avionics flight control, electronic countermeasures, 
command and control, and targeting applications. Our experience in applying 
AMPIC has shown that its capability to analyze complex programs has reduced the 
need for several commonly employed software tools and has added much needed 
rigor to verification and validations techniques. 

SUBROUTINE ROOT 
IMPLICIT INTEGER*2(I,K-N) 
COMMON/ARGS/A,B,C 
COMMON/VALUE/ROOT1,~OOT2,NROOT 
IF(A.EQ.0) GOT0 100 
TEMPI = 4 *A*C 
TEMPl = B;B - TEMPl 
IF(TEMPl.LT.0) GOT0 100 
TEMP2 = 2.*A 
ROOT2 = -(B/TEMP2) 
IF(TEMPl.EQ.0) GOT0 300 
TEMPZ = FSQRT(TEMPl)/TEMP2 
ROOT1 = ROOT2 + TEMP2 
ROOT2 = ROOT2 - TEMP2 
NROOT = 2 
RETURN 

100 NROOT = 0 
RETURN 

300 ROOT1 = ROOT2 
NROOT = 1 
RETURN 

‘r-1 IF(A.EQ.0.) GOT0 S7 

s2 TEMP1=4 *A*C 
TEMPl=B;B-TEMPI 

T3 IF(TEMPl.LT.0.) GOT0 S7 

s4 TEMP2=2.*A 
ROOT2=-B/TEMP2 

T5 IF(TEMPl.EQ.0.) GOT0 S8 

56 TEMP2=FSQRT(TEMPl)/TEMP2 
ROOTl=ROOT2+TEMP2 
ROOT2=ROOT2-TEMP2 
NROOT=2 
GOT0 OUT 

57 NROOT=O 
GOT0 OUT 

END 58 ROOTl=ROOT2 
NROOT=l 
GOT0 OUT 

Sample Program and its Sequence and Transfer Segments 

Figure 1 
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<T3>- - - - - - 
I I 

Abbreviated Flowchart of Sample Program 

Figure 2 

Tl: JUMP (A = 0.) 
NO JUMP (A # 0.) 

52: TEMPl<NU> = B * B - 4. * A * C 

T3: JUMP (TEMPT < 0.) 
No JUMP (TEMPT 2 0.) 

54: TEMP2<NU> = 2. l A 
ROOT2<NU> = - B / (2. * A) 

T5: JUMP (TEMPT = 0.) 
NO JUMP (TEMPT f 0.) 

56: TEMP2<NU> = .FSQRT(TEMPl) / TEMp2 
ROOTl<NU> = ROOT2 + .FSQRT(TEMPl) / TEMP2 
ROOT2<NU> = ROOT2 - .FSQRT(TEMPl) / TEMP2 
NROOT<NU> = 2 

57: NROOT<NU> = 0 

S8: ROOTl<NU> = ROOT2 
NROOl<NU= = 1 

Translation of Sample Program 

Figure 3 
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S2 DLA OCl 
FMR A 
FMR C 
DSA TEMPl 
DLA B 
FMR B 
FANR TEMPl 
DSA TEMPl 

S2: $A<NU> = B * B - 4. * A * C 
$O<NU> = 0 
$iKNU> # 1 
TEMPl<NU> = B * B - 4. * A * C 

Translation for Equivalent Assembly Language Segment 

Figure 4 

PATH: (Pl,S2,P3,S4,P5,S6,OUT) 

IF: (A # 0.) & (8 * B - 4. * A * C 2 0.) & (B * B - 4. * A * C # 0.) 

THEN: TEMPl<NU> = B l B - 4. * A * C 
TEMPP<NU> = .FSQRT(B l B - 4. * A * C) / (2. * A) 
ROOT2<NU> = - B / (2. * A) - .FSQRT(B l B - 4. * A * C) / (2. *A) 
ROOTl<NU> = - B / (2. * A) + .FSQRT(B * B - 4. * A l C) / (2. * A) 
NROOT<NU> = 2 

PATH: (Pl,S2,P3,S4,R5,SB,OUT) 

IF: (A # 0.) t (B * B - 4. * A * C 2 0.) & (B * B - 4. l A l C = 0.) 

THEN: TEMPl<NU> = B * B - 4. * A * C 
TEMP2<NU> = 2. * A 
ROOT2<NU> = - B / (2. * A) 
ROOTl<NU> = - B / (2. * A) 
NROOT<NU> = 1 

Symbolic Execution Results for Two Paths of Sample Program 

Figure 5 
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27 
SQLAB - Tools for Program Verification 

Sabina H. Saib 
General Research Corporation 

The Software Quality Laboratory (SQLAD) is made up of a collection of 
tools which can assist in the verification of a program written in one of 
several programming languages (FORTRAN, IFTRAN, PASCAL, and Verifiable PASCAL). 
The tools available in SQLAB provide reports in a fashion similar to compiler 
diagnostics on errors that have been found to be costly in a number of error 
studies. 

Two major types of analyses are available: those that require additional 
information prepared when the program is written and those that can analyze 
the program as it is written normally. The set/use, mode, infinite loop, ex- 
ternal reference, and unreachable code analyses require no additional state- 
ments. The asserted use, units, and consistency proofs require additional in- 
formation in the form of assertions. 

The following capabilities are available for statically determining con- 
sistency between source-level specifications and source code: 

1. Verification condition generation by symbolically executing 
INITIAL, ASSERT, and FINAL statements in combination with 
source-code statements 

2. Logical simplification of verification conditions by applying 
standard normalization and simplification rules of predicate 
calculus and first-order logic, as well as user-supplied axioms 

3. Data access correctness checking of asserted access rights 
to non-local data and parameters and actual access based on 
data flow analysis 

4. Units correctness checking by automatically comparing embedded 
physical unit specifications with computational, decision, 
and procedure reference statements 

In addition, multi-module documentation reports, parameter checking reports, 
and automatic instrumentation are available. 
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SOFTWARE QUALITY LABORATORY 

0 INTRODUCE PRACTICAL APPLICATIONS OF PROOF OF 

CORRECTNESS TO LARGE, COMPLEX, REAL TIME PROGRAMS 

0 ELIMINATE COMMON ERRORS FROM SOFTWARE 

0 INVESTIGATE LANGUAGES AND LANGUAGE CONSTRUCTS WHICH 

AID SOFTWARE QUALITY 

Figure 1 

SQLAB CAPABILITIES 

STATIC ANALYSIS - WITHOUT ASSERTIONS 

STATIC ANALYSIS - WITH ASSERTIONS 

EXECUTION OF ASSERTIONS 

VERIFICATION CONDITION GENERATION 

COVERAGE ANALYSIS 

Figure 2 
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PUTURE PLANS FOR SQLAB 

0 DEMONSTRATE DETECTION OF SPECIFIC ERROR TYPES 

IN LARGE PROGRAMS 

0 PROVIDE NEW ASSERTION TYPES 

SEQUENCE OF OPERATIONS 

PRIORITY AND TIMING 

0 PROPOSE SPECIFICATION LANGUAGE 

TI‘E.THE MODULE STUBS TO SPECIFICATION 

Figure 3 

LOOP ANAL YS I3 SUsROuTINE TEST 

THE COND~TIOM THAT Must BE TRUE FOR THIS LOOP TO TERMINATE IS- 

YFLAG .6Tg 0 *AND* K *CT. 0 

0 
5 ( 1) 
6 ( 21 
7 ( 1) 
a ( 2) 
9 ( 1) 

16 

WHILE ( I .LE. N ) 
. IF ( I .Ea. 5 ) 
. . I =1+u 
. ELSE 
. . z= I + WLA~ 

ENOfF 
;NDHm LE 

Figure 4 
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AQA CONTRIBUTIONS YS STATE OF THE ART 

0 PRACTICAL USE OF 
ASSERTION TECHNIQUES 

vs SOLE DEPENDENCE ON PROOF 

a REAL PROGRAMMING LANUAGES VS THEORETICAL LANGUAGES 
FORTRAN LISP 
PASCAL NUCLEUS 

0 NORMAL ARITHMETIC vs ONLY INTEGER 
REAL 
DOUBLE PRECISION 
COMPLEX 

0 NORMAL DATA STRUCTURES vs ONLY SIMPLE VARIABLES 
ARRAY 

0 RECOVERY FROM FAULTS vs CATASTROPHIC FAILURE 

0 ANALYSIS OF LARGE PROGRAMS VS IMPRACTICAL COMPUTATION TIMES 
WITH REASONABLE USE 
OF COMPUTER RESOURCES 

Figure 5 

*,mlE”1s 

NO. STATEMENTS VS TIME 

Figure 6 
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28 
* 

A SOFTWARE QUALITY ASSURANCE EXPERIMENT 

J. P. Benson 
S. H. Saib 

General Research Corporation 

Over the past two years a number of techniques designed to 
eliminate errors in software have been implemented in a collection of 
programs called the Software Quality Laboratory. An important goal 
of this effort has been the ability to analyze "realistic" programs. 
By he&,&tic we mean programs which can execute on current computers 
with current compilers, use floating point arithmetic, incorporate data 
structures, be composed of multiple modules, and have a total size of 
perhaps several thousand statements. 

In order to demonstrate SQLAB's ability to locate errors, a medium 
size program (-1000 statements) was selected. The program simulates the 
tracking of objects by a radar and embodies many of the character- 
istics of a complex software system including multitasking and data 
structures composed of queues and records. 

The experiment described in this paper was designed to evaluate 
the use of assertions in a real time program. The experiment consisted 
of adding errors to the test program from a list of the most common 
software errors. A number of errors from a set of error categories 
were selected and introduced into the test program. (During the course 
of the experiment some errors already present in the program were also 
detected.) Executable assertions were written to detect the errors and 
the program was run to verify that the errors were actually detected. 
The results suggest that some of the assertions could have been made 
part of the variable definition statements of the programming language 
itself rather than separate statements. In addition, three new types of 
assertions which would be useful in error detection were identified: 
variable range assertions, approximate result assertions, and sequencing 
assertions. 

* 
This work was supported by the Army Ballistic Missile Defense Systems 

Command under contract DASG60-76-C-0050. 
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SOFTWARE VERIFICATION USING SOLAB 

PROOF L-5 

USES OF ASSERTIONS 

PROOF OF CORRECTNESS 

INITIAL (B >= 0); 

0 := B; 

c := 0; 

WHILE (0 f 0); 

ASSERT (C + A l D = A l 8); 

. . (B >= 0) AND (D # 0) =? (C + A l B = A * B) 

EXECUTION TIME VALIDATION 

ASSERT ((RFIRST > IR) ANO (XNEXT > ix) AND (XLATE <= IR)); 

FAIL 

TIMEOVERLAP 

END FAIL; 

STATIC ANALYSIS 

VAR SOVEL : REAL UNITS METERS/USEC; 

INPUT RETURN, SPOUT, OBJIO; 

OUTPUT OTOSREC, TOTOSREC, SROSREC; 

Figure 1 Figure 2 



SOFTWARE QUALITY EXPERIMENT 

SOFTWARE ERROR CATEGORIES 

COMPUTATION ERRORS 

USING THE WRONG EQUATION 

OVERFLOW 

UNDERFLOW 

MISSING COMPUTATION 

EXTRANEOUS COMPUTATION 

DATA HANDLING ERRORS 

SUBSCRIPT ERRORS 

FAILURE TO INITIALIZE A VARIABLE 

REFERENCING THE WRONG VARIABLE 

UPDATING THE WRONG VARIABLE 

LOGIC ERRORS 

MISSING TEST 

INCORRECT TEST 

INCORRECT SEQUENCING 

HYPOTHESIS: EXECUTABLE ASSERTIONS ARE MORE EFFICIENT AND EFFECTIVE 

THAN CORRECTNESS PROOF OR STATIC ANALYSIS IN DETECTING 

THE MOST COMMON TYPES OF PROGRAM ERRORS. 

.o EVALUATION 

Figure 3 Figure 4 



RESULTS AND CONCLUSIONS 

ERROR DETECTION METHODS 

REPRESENTATIVE ERRORS 

COMPUTATION ERRORS 

Cl: USING THE WRONG VARIABLE NAME IN AN EDU.4TION 

c2: LEAVING OUT A COMPUTATION 

c3: ADDING AN UNNEEDED COMPUTATION 

DATA HANDLING ERRORS 

Dl: REFERENCING THE WRONG VARIABLE N4ME 

D2: USING THE HRONG ARITHMETIC OPERATOR 

D3: NOT INITIALIZING A VARI4BLE CORRECTLY 

LOGIC ERRORS 

Ll: LEAVING OUT A TEST 

LE: USING THE WRONG RELATIONAL OPERATOR IN A TEST 

L3: EXECUTING THE WRONG SEQUENCE OF DECISIONS 

ERROR TYPE 

Cl 

Dl 

D2 

D3 

c2 

c3 

Ll 

i2 

L3 

ERROR CHECK METHOD 

CASE ANALYSIS STATIC 

CASE ANALYSIS STATIC 

RANGES AND BOUNDS STATIC 

INITIALIZATION AND RANGE CHECKS STATIC 

BOUNDS 

DUPLICATION 

EXECUTABLE 

EXECUTABLE 

REQUIREMENTS 

AUXILIARY VARIABLE (INVARIANT) 

ASSERTED ELSE 

PROOF 

PROOF 

PROOF 

COST 

PROGRAM WITH ASSERTIONS 

Compilation Time +56% 

Execution Time +12% 

Load Length +13.59! 

Pigure 5 Figure 6 
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A SIMULATOR DEVICE FOR VALIDATION OF GENERAL AVIONICS EMBEDDED SOFTWARE 

Byron M. Allen and Gary H. Barber 
Intermetrics, Inc. 

SUMMARY 

The recent trends in avionics processing have been towards distributed 
digital computers. This trend has led to a proliferation of computers 
connected in a complex fashion. This situation has resulted in serious 
integration problems. The history of software development has shown that 
integration with systems external to the given computer is the most difficult 
and costly portion of software development. Effective tools are needed 
to validate avionics software before expensive flight testing and without 
safety of flight restrictions. 

The military avionic systems have contained digital computers since 
1968 and the science of verification and validation has evolved since then. 
Many tools ranging from instruction level simulators to Integrated Avionic 
simulation have resulted and today a full range of these tools are utilized 
to verify the operational flight programs of today's military aircraft. 

The software required to drive these simulators has also evolved since 
running in real time is often required. Aircraft models come in varying 
complexities depending upon the avionic device being tested. 

Since general aviation avionic manufacturers do not normally have the 
extended budgets required for exhaustive levels of testing, a less expensive 
generalized tool is required. This tool could be utilized for the develop- 
ment and testing of flight software as well as extensive hardware/software 
integration. This tool should provide all basic requirements of system 
testing prior to flight test. The tool is designed in a modular fashion 
such that both hardware and software can be modified to provide testing 
of a wide variety of avionic systems. 
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DEFINITION OF DISTRIBUTED PROCESSING 

o MULTIPLICITY OF RESOURCES 

o PHYSICAL DISTRIBUTION 

o COOPERATIVE AUTONOMY 

o CONTROL ARCHITECTURE 

o SYSTEM EXECUTIVE 

o SYNCHRONIZATION SCHEME 

Figure 1 

HISTORY OF MILITARY AVIONIC SOFTWARE 

o A7A, A7B AdALOG SYSTEMS WERE REPLACED BY A CENTRALIZED 
DIGITAL COMPUTER IN 1969 

o AVIONIC SYSTEM QUICKLY OUTGREW COMPUTER CAPABILITIES 
AND SOFTWARE SUFFERED 

o HIGHER ORDER LANGUAGES FOR AVIONICS WERE REQUIRED IN 
ORDER TO INCREASE UNDERSTANDABILITY 

o IdVESTMENTS 114 SIMULATORS OF MANY LEVELS HAVE BEEN 
DEVELOPED FOR EVERY AIRCRAFT SYSTEM 

Figure 2 
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GENERAL AVIATION PROBLEMS 

o CERTIFICATION OF EMBEDDED SOFTWARE WILL BE A CONTINUING PROBLEM 

o GENERAL AVIATION AVIONIC MANUFACTURERS DO NOT HAVE EXTENSIVE 
BUDGETS THAT ALLOW PURCHASE OF MULTI-LEVELS OF SIMULATION 
EQUIPMENT 

o PURCHASE OF MULTIPLE COMPUTER SYSTEMS THAT SPECIALIZED FOR 
PARTICULAR TASKS IS iJOT FEASIBLE 

o CONCLUSION - AN INTEGRATED AVIONIC SIMULATOR THAT SUPPORTS 
SOFTWARE DEVELOPMENT, SOFTWARE TEST, AND HARDWARE INTEGRATION 
IS REQUIRED 

Figure 3 

BLOCK DIAGRAM OF INTEGRATED AVIONIC SIMULATION 

OPERATOR'S 
CONSOLE 
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THROTTLE 
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TAPE 
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Figure 4 
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IAS SOFTWARE 
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Figure 5 

INTEGRATED AVIONIC SIMULATOR 

o UTILIZES MUCH OF THE SAME EQUIPMENT AS THE DTS EXCEPT IT PROVIDES 
INTERFACES FOR USE OF ACTUAL AVIONIC EQUIPMENT 

o HIGH SPEED CONTROLLER PROVIDES PROGRAM SUPPORT REQUIRED FOR DEBUG 

o THE SPECIAL INTERFACE DEVICE PROVIDES A GENERAL INTERFACING 
CAPABILITY FOR VARIOUS ANALOG AND DISCRETE SIGNALS 

Figure 6 
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DYNAMIC INTEGRATED TEST FOR THE SPACE SHUTTLE 30 

Saul F. Stanten 
Intermetrics, Inc. 

; 
F 

A requirement exists for integrated testing of the Space Shuttle vehicle, 

c 
at Kennedy Space Center (KSC), prior to orbital flight. Vehicle complexity 
and cost considerations have forced a search for innovative techniques for 
implementation of integrated vehicle testing. This paper describes the motiva- 
tion for Dynamic Integrated Test (DIT), the technique developed, and experimental 
evidence which verifies the soundness of the approach. In addition, the applica- 
billity to other real time avionics systems is explored. The test concept has 
been accepted by the NASA, and tests on the OFT-l vehicle are planned for the 
summer of 1979. 

KSC is the first and only place that the actual orbiter, mated elements 
(solid Rocket Boosters and External Tank), software, Ground Support Equipment 
and payloads all come together. It is essential to check the total ascent 
and entry configuration in an integrated fashion prior to flight. Examples of 
items to be verified during such a test include data bus activity patterns, 
critical timing sequences, software and hardware moding as a function of flight 
parameters, interaction between real sensors, flight software, real effecters, 
compatibility of ground launch software/hardware and on-board software/hardware, 
the absence of EM1 problems, and other systems interactions which cannot be 
tested fully in a laboratory environment. 

The Space Shuttle is a complex digitally controlled vehicle in which most 
navigation, guidance, flight control, systems management, sequencing, display 
generation, and crew controls are processed by the redundant central digital 
computers. To perform a truly integrated test of the mated vehicle, it is 
necessary to supply coordinated sensor and crew data to the flight software; so 
the system can mode and sequence as it does during a flight. In addition, the 
effect of real sensors (IMUs, TACAN, pressure transducers, crew, etc) upon 
real effecters (elevons, rudder, engine bells, landing gears, ventdoors, 
displays, etc) should be measured. Vehicle safety requirements also necessitate 
that certain signals such asthoseinvolved in the mixing of hypergolic fuels 
and oxidizers be inhibited during a DIT. 

The DIT methodology allows the above requirements to be satisfied in a 
conceptually simple manner. A defined flight scenario is first run in a closed 
loop digital simulation. The sensor inputs to the simulated flight software 
are recorded and converted by an off line program (SIMGEN) into the proper format 
to drive the flight software during a DIT run. This data (SIMDATA) is then 
supplied to the vehicle by means of the Launch Data Bus, which is controlled by 
the Launch Processing System. SIMDATA may be used instead of real sensor data 
(substitution mode), or it may be added to real sensor data (combination mode) 
to produce realistic sensor profiles. The combination mode necessitates that 
SIMDATA be compensated with ground nominal models of the sensors. 
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DIT runs are evaluated by observing telemetry data and cockpit displays. 
The DIT data is compared against analogous results of the original digital 
simulation and laboratory DIT runs, 

Initial development of DITs are performed in the Rockwell Avionics Develop- 
ment Laboratory. Shuttle Avionics Test Sets (SATS) are employed to control 
the tests, record telemetry data, and simulate real sensors when necessary. 
Real flight computers, mass memory and displays are employed. At KSC, DIT 
tests are planned to be run in the Orbiter Processing Facility (OPF) and in the 
Vehicle Assembly Building (VAB). 

Successful DIT runs have been performed in the Avionics Development Labora- 
tory on both the Approach and Landing Test software and on preliminary Orbital 
Flight Test software. These tests verified the described techniques: SIMDATA 
was combined with a real IMU sensor data to demonstrate the end to end test 
capability; synchronization of SIMDATA and flight software was achieved. The 
test have proved to be repeatable, and good agreement between DIT runs and the 
digital simulation runs have been achieved. Three IMU alignment discrepancies 
and one flight software discrepancy were discovered as a by-product of these 
activities. 

As a result of our activities to date a number of generalizations relevant 
to other avionics systems may be suggested. First, consideration of an integra- 
ted test capability at the beginning of a program can prevent the unnecessary 
expense of retrofitting the test after the program in underway. Second, a 
port into the flight software must be provided so that sensor data may be 
injected into flight software. Third, flight software code should be provided 
with a test mode whereby it can accept and utilize externally supplied sensor 
data. Fourth, flight software should be provided with a mechanism to inhibit 
hazardous ouputs during an integrated test. Finally the DIT technique can be 
used to run any desired scenario with any degree of off nominal performance. 
It can be employed not only as a final integration test (as planned for KSC) 
but also as a more comprehensive system verification tool. 
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DIT DEVELOPMENT SCHEDULE 
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LAB CONFIGURATION FOR DIT TESTING 
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DOWNRANGE VELOCITY WITH RESPECT TO RUNWAY 
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ESTIMATED ALTITUDE RATE 
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